Graphical models, message-passing algorithms and variational methods

Martin Wainwright Department of Statistics, and EECS UC Berkeley, Berkeley, CA USA

Machine Learning Summer School, Bordeaux, France September 2011

For further information (tutorial slides, papers, course lectures), see: www.eecs.berkeley.edu/~wainwrig/GraphModel

Introduction

- useful in many statistical and computational fields:
 - machine learning, artificial intelligence
 - computational biology, bioinformatics
 - statistical signal/image processing, spatial statistics
 - statistical physics
 - communication and information theory

Graphs and random variables

- associate to each node $s \in V$ a random variable X_s
- for each subset $A \subseteq V$, random vector $X_A := \{X_s, s \in A\}$.

Maximal cliques (123), (345), (456), (47)

- a clique $C \subseteq V$ is a subset of vertices all joined by edges
- a vertex cutset is a subset $S \subset V$ whose removal breaks the graph into two or more pieces

Factorization and Markov properties

The graph G can be used to impose constraints on the random vector $X = X_V$ (or on the distribution p) in different ways.

Markov property: X is Markov w.r.t G if X_A and X_B are conditionally indpt. given X_S whenever S separates A and B.

Factorization: The distribution p factorizes according to G if it can be expressed as a product over cliques:

$$p(x_1, x_2, \dots, x_N) = \underbrace{\frac{1}{Z}}_{C \in \mathcal{C}} \underbrace{\prod_{C \in \mathcal{C}} \psi_C(x_C)}_{\psi_C(x_C)}$$

Normalization

compatibility function on clique C

Theorem: (Hammersley & Clifford, 1973) For strictly positive $p(\cdot)$, the Markov property and the Factorization property are equivalent.

(a) Markov chain

(b) Coupled Markov chain

- hidden Markov models (HMMs) are widely used in various applications discrete X_t: computational biology, speech processing, etc.
 Gaussian X_t: control theory, signal processing, etc.
- frequently wish to solve *smoothing* problem of computing $p(x_t | y_1, \dots, y_T)$
- exact computation of marginals/modes in HMMs is tractable (Viterbi; forward-backward algorithm)
- coupled HMMs require approximation algorithms

Example 2: Social network analysis

Goal: Model interactions among entities in a social network (e.g., epidemics, FaceBook, criminals)

Simple illustration based on *Ising model*:

(Ising, 1925)

$$p(x_1, \dots, x_N) = \frac{1}{Z} \prod_{(s,t) \in E} \psi_{st}(x_s, x_t) = \frac{1}{Z} \exp\left(\sum_{(s,t) \in E} \theta_{st} x_s x_t\right)$$

– estimation of model parameters

Example 4: Graphical codes for channel coding Goal: Achieve reliable communication over a noisy channel. $\underbrace{\stackrel{0}{\underset{\text{source}}{}} \underbrace{\stackrel{00000}{\underset{X}{}} \underbrace{\stackrel{00000}{\underset{\text{Channel}}{}} \underbrace{\stackrel{10010}{\underset{Y}{}} \underbrace{\stackrel{00000}{\underset{\text{Decoder}}{}} \underbrace{\stackrel{00000}{\underset{X}{}} \underbrace{\stackrel{00000}{\underset{X}{}} \underbrace{\stackrel{10010}{\underset{X}{}} \underbrace{\stackrel{00000}{\underset{X}{}} \underbrace{\stackrel{0000}{\underset{X}{}} \underbrace{\stackrel{00000}{\underset{X}{}} \underbrace{\stackrel{0000}{\underset{X}{}} \underbrace{\stackrel{0000}{\underset{X}{}} \underbrace{\stackrel{0000}{\underset{X}{}} \underbrace{\stackrel{0000}{\underset{X}{}} \underbrace{\stackrel{000}{\underset{X}{}} \underbrace{\stackrel{000}{\underset{X}{}} \underbrace{\stackrel{000}{\underset{X}{}} \underbrace{\stackrel{000}{\underset{X}{}} \underbrace{\stackrel{00}{\underset{X}{}} \underbrace{\stackrel{00}{\underset{X}{} \underbrace{\stackrel{00}{\underset{X}{}} \underbrace{\stackrel{00}{\underset{X}{}} \underbrace{\stackrel{00}{\underset{X}{}} \underbrace{\stackrel{00}{\underset{X}{}} \underbrace{\stackrel{00}{\underset{X}{} \underbrace{\stackrel{00}{\underset{X}{}} \underbrace{\stackrel{00}{\underset{X}{}} \underbrace{\stackrel{00}{\underset{X}{}} \underbrace{\stackrel{00}{\underset{X}{} \underbrace{\stackrel{00}{\underset{X}{}} \underbrace{\stackrel{00}{\underset{X}{}} \underbrace{\stackrel{00}{\underset{X}{} \underbrace{\stackrel{00}{\underset{X}{}} \underbrace{\stackrel{00}{\underset{X}{} \underbrace{\stackrel{00}{\underset{X}{}} \underbrace{\stackrel{00}{\underset{X}{} \underbrace{\stackrel{00}{\underset{X}{}$

- wide variety of applications: satellite communication, sensor networks, computer memory, neural communication
- error-control codes based on careful addition of redundancy, with their fundamental limits determined by Shannon theory
- key implementational issues: *efficient* construction, encoding and decoding
- very active area of current research: graphical codes (e.g., turbo codes, LDPC) and message-passing algorithms
 (e.g., Gallager, 1963; Berroux et al., 1993; MacKay, 1999; Richardson & Urbanke, 2001)

Graphical codes and decoding

Example 5: Lossy data compression

- low-density generator matrix (LDGM) codes are sparse graphical code in generator form (dual to LDPC)
- n source bits: specifies the parity of associated check
- *m* information bits: compression rate $R = \frac{m}{n}$

Lossy source encoding with LDGM codes

studied in past work by several groups (Ciliberti et al., 2005; Murayama, 2004; Wainwright & Maneva, 2005; Zecchina et al., 2005)

• given a source sequence $y \in \{0,1\}^n$, choose information sequence $z \in \{0,1\}^n$ to minimize distortion

$$\hat{z} = \arg \min_{z \in \{0,1\}^m} \|Gz - y\|_1$$

equivalent to MAX-XORSAT problem – comp. intractable

• given encoded $\widehat{z} \in \{0,1\}^m$, decode by matrix multiplication $\widehat{y} = G\widehat{z}$

Core computational challenges

Given an undirected graphical model (Markov random field):

$$p(x_1, x_2, \dots, x_N) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_C(x_C)$$

How to efficiently compute?

• the data likelihood or normalization constant

Sum/integrate:
$$Z = \sum_{x \in \mathcal{X}^N} \prod_{C \in \mathcal{C}} \psi_C(x_C)$$

• marginal distributions at single sites, or subsets:

Sum/integrate:
$$p(X_s = x_s) = \frac{1}{Z} \sum_{x_t, t \neq s} \prod_{C \in \mathcal{C}} \psi_C(x_C)$$

• most probable configuration (MAP estimate):

Maximize:
$$\widehat{\mathbf{x}} = \arg \max_{\mathbf{x} \in \mathcal{X}^N} p(x_1, \dots, x_N) = \arg \max_{\mathbf{x} \in \mathcal{X}^N} \prod_{C \in \mathcal{C}} \psi_C(x_C).$$

Variational methods

- *"variational":* umbrella term for optimization-based formulations
- many modern algorithms are variational in nature:
 - dynamic programming, finite-element methods
 - max-product message-passing
 - sum-product message-passing: generalized belief propagation, convexified belief propagation, expectation-propagation
 - mean field algorithms

Classical example: Courant-Fischer for eigenvalues:

$$\lambda_{\max}(Q) = \max_{\|x\|_2 = 1} x^T Q x$$

Variational principle: Representation of interesting quantity \mathbf{u}^* as the solution of an optimization problem.

- 1. \mathbf{u}^* can be analyzed/bounded through "lens" of the optimization
- 2. approximate \mathbf{u}^{\star} by relaxing the variational principle

Outline

- 1. Max-product, linear programming, and other conic relaxations
 - (a) Max-product and variational interpretation
 - (b) Marginal polytopes
 - (c) Linear programming and tree-reweighted max-product
 - (d) Conic relaxations and on-going work
- 2. Variational methods for integration/summation
 - (a) Exponential families and maximum entropy
 - (b) Core variational principle
- 3. Algorithms from the variational principle
 - (a) Exact methods for Gaussians
 - (b) Belief-propagation/sum-product
 - (c) Expectation-propagation
 - (d) Convex relaxations

Variational view: Max-product and linear programming

• MAP as integer program: $f^* = \max_{\mathbf{x} \in \mathcal{X}^N} \left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right\}$

• define local marginal distributions (e.g., for m = 3 states):

$$\mu_s(x_s) = \begin{bmatrix} \mu_s(0) \\ \mu_s(1) \\ \mu_s(2) \end{bmatrix} \qquad \mu_{st}(x_s, x_t) = \begin{bmatrix} \mu_{st}(0, 0) & \mu_{st}(0, 1) & \mu_{st}(0, 2) \\ \mu_{st}(1, 0) & \mu_{st}(1, 1) & \mu_{st}(1, 2) \\ \mu_{st}(2, 0) & \mu_{st}(2, 1) & \mu_{st}(2, 2) \end{bmatrix}$$

• alternative formulation of MAP as linear program?

$$g^* = \max_{(\mu_s, \mu_{st}) \in \mathbb{M}(G)} \left\{ \sum_{s \in V} \mathbb{E}_{\mu_s} [\theta_s(x_s)] + \sum_{(s,t) \in E} \mathbb{E}_{\mu_{st}} [\theta_{st}(x_s, x_t)] \right\}$$

Local expectations:
$$\mathbb{E}_{\mu_s} [\theta_s(x_s)] := \sum_{x_s} \mu_s(x_s) \theta_s(x_s).$$

Key question: What constraints must local marginals $\{\mu_s, \mu_{st}\}$ satisfy?

Marginal polytopes for general undirected models

• $\mathbb{M}(G) \equiv$ set of all globally realizable marginals $\{\mu_s, \mu_{st}\}$:

$$\left\{ \vec{\mu} \in \mathbb{R}^d \mid \mu_s(x_s) = \sum_{x_t, t \neq s} p_\mu(\mathbf{x}), \text{ and } \mu_{st}(x_s, x_t) = \sum_{x_u, u \neq s, t} p_\mu(\mathbf{x}) \right\}$$

for some $p_{\mu}(\cdot)$ over $(X_1, \ldots, X_N) \in \{0, 1, \ldots, m-1\}^N$.

- polytope in $d = m|V| + m^2|E|$ dimensions (*m* per vertex, m^2 per edge)
- with m^N vertices
- number of facets?

Marginal polytope for trees

- $\mathbb{M}(T) \equiv$ special case of marginal polytope for tree T
- local marginal distributions on nodes/edges (e.g., m = 3)

$$\mu_s(x_s) = \begin{bmatrix} \mu_s(0) \\ \mu_s(1) \\ \mu_s(2) \end{bmatrix} \qquad \mu_{st}(x_s, x_t) = \begin{bmatrix} \mu_{st}(0,0) & \mu_{st}(0,1) & \mu_{st}(0,2) \\ \mu_{st}(1,0) & \mu_{st}(1,1) & \mu_{st}(1,2) \\ \mu_{st}(2,0) & \mu_{st}(2,1) & \mu_{st}(2,2) \end{bmatrix}$$

Deep fact about tree-structured models: If $\{\mu_s, \mu_{st}\}$ are non-negative and *locally consistent*:

Normalization :
$$\sum_{x_s} \mu_s(x_s) = 1$$

Marginalization : $\sum_{x'_t} \mu_{st}(x_s, x'_t) = \mu_s(x_s),$

then on any tree-structured graph T, they are globally consistent.

Follows from junction tree theorem

(Lauritzen & Spiegelhalter, 1988).

Max-product on trees: Linear program solver

• MAP problem as a simple linear program:

$$f(\widehat{\mathbf{x}}) = \arg \max_{\overrightarrow{\mu} \in \mathbb{M}(T)} \left\{ \sum_{s \in V} \mathbb{E}_{\mu_s} [\theta_s(x_s)] + \sum_{(s,t) \in E} \mathbb{E}_{\mu_{st}} [\theta_{st}(x_s, x_t)] \right\}$$

subject to $\vec{\mu}$ in tree marginal polytope:

$$\mathbb{M}(T) = \left\{ \vec{\mu} \ge 0, \quad \sum_{x_s} \mu_s(x_s) = 1, \qquad \sum_{x'_t} \mu_{st}(x_s, x'_t) = \mu_s(x_s) \right\}.$$

Max-product and LP solving:

- on tree-structured graphs, max-product is a dual algorithm for solving the tree LP. (Wai. & Jordan, 2003)
- max-product message $M_{ts}(x_s) \equiv$ Lagrange multiplier for enforcing the constraint $\sum_{x'_t} \mu_{st}(x_s, x'_t) = \mu_s(x_s)$.

Tree-based relaxation for graphs with cycles Set of *locally consistent pseudomarginals* for general graph G: $\mathbb{L}(G) = \left\{ \vec{\tau} \in \mathbb{R}^d \mid \vec{\tau} \ge 0, \sum_{x_s} \tau_s(x_s) = 1, \sum_{x_t} \tau_{st}(x_s, x_t') = \tau_s(x_s) \right\}.$ Integral vertex $\mathbb{M}(G)$ Fractional vertex

Key: For a general graph, L(G) is an outer bound on M(G), and yields a *linear-programming relaxation* of the MAP problem:

$$f(\widehat{\mathbf{x}}) = \max_{\vec{\mu} \in \mathbb{M}(G)} \theta^T \vec{\mu} \le \max_{\vec{\tau} \in \mathbb{L}(G)} \theta^T \vec{\tau}.$$

Pseudomarginals satisfy the "obvious" local constraints:

Normalization: Marginalization: $\sum_{x'_s} \tau_s(x'_s) = 1 \text{ for all } s \in V.$ $\sum_{x'_s} \tau_s(x'_s, x_t) = \tau_t(x_t) \text{ for all edges } (s, t).$

Max-product and graphs with cycles

Early and on-going work:

- single-cycle graphs and Gaussian models (Aji & McEliece, 1998; Horn, 1999; Weiss, 1998, Weiss & Freeman, 2001)
- local optimality guarantees:
 - "tree-plus-loop" neighborhoods
 - optimality on more general sub-graphs
- exactness for matching problems (Bayati et al., 2005, 2008, Jebara & Huang, 2007, Sanghavi, 2008)

A natural "variational" conjecture:

- max-product on trees is a method for solving a linear program
- is max-product solving the first-order LP relaxation on graphs with cycles?

(Weiss & Freeman, 2001)

(Wainwright et al., 2003)

Standard analysis via computation tree

• standard tool: computation tree of message-passing updates (Gallager, 1963; Weiss, 2001; Richardson & Urbanke, 2001)

Example: Standard max-product does not solve LP

(Wainwright et al., 2005)

Intuition:

- max-product solves (exactly) a modified problem on computation tree
- nodes not equally weighted in computation tree ⇒ max-product can output an incorrect configuration

A whole family of non-exact examples

- for γ sufficiently large, optimal solution is always either $1^4 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ or $(-1)^4 = \begin{bmatrix} (-1) & (-1) & (-1) \end{bmatrix}$
- first-order LP relaxation always exact for this problem
- max-product and LP relaxation give *different* decision boundaries:

$$\begin{array}{ll} \underline{\text{Optimal/LP boundary:}} & \widehat{\mathbf{x}} = \begin{cases} 1^4 & \text{if } 0.25\alpha + 0.25\beta \geq 0\\ (-1)^4 & \text{otherwise} \end{cases} \\ \\ \underline{\text{Max-product boundary:}} & \widehat{\mathbf{x}} = \begin{cases} 1^4 & \text{if } 0.2393\alpha + 0.2607\beta \geq 0\\ (-1)^4 & \text{otherwise} \end{cases} \end{array}$$

Tree-reweighted max-product algorithm

(Wainwright, Jaakkola & Willsky, 2002)

Message update from node t to node s:

reweighted messages

$$M_{ts}(x_s) \leftarrow \kappa \max_{x'_t \in \mathcal{X}_t} \left\{ \exp\left[\frac{\theta_{st}(x_s, x'_t)}{\rho_{st}} + \theta_t(x'_t)\right] \frac{\prod_{v \in \Gamma(t) \setminus s} \left[M_{vt}(x_t)\right]^{\rho_{vt}}}{\left[M_{st}(x_t)\right]^{(1-\rho_{ts})}} \right\}.$$

reweighted edge opposite message

Properties:

- 1. Modified updates remain *distributed* and *purely local* over the graph.
 - Messages are reweighted with $\rho_{st} \in [0, 1]$.
- 2. Key differences: Potential on edge (s, t) is rescaled by $\rho_{st} \in [0, 1]$.
 - Update involves the reverse direction edge.
- 3. The choice $\rho_{st} = 1$ for all edges (s, t) recovers standard update.

Edge appearance probabilities

Experiment: What is the probability ρ_e that a given edge $e \in E$ belongs to a tree T drawn randomly under ρ ?

TRW max-product and LP relaxation

First-order (tree-based) LP relaxation:

$$f(\widehat{\mathbf{x}}) \leq \max_{\overrightarrow{\tau} \in \mathbb{L}(G)} \left\{ \sum_{s \in V} \mathbb{E}_{\tau_s}[\theta_s(x_s)] + \sum_{(s,t) \in E} \mathbb{E}_{\tau_{st}}[\theta_{st}(x_s, x_t)] \right\}$$

Results: (Wainwright et al., 2005; Kolmogorov & Wainwright, 2005):

- (a) **Strong tree agreement** Any TRW fixed-point that satisfies the strong tree agreement condition specifies an optimal LP solution.
- (b) **LP solving:** For any binary pairwise problem, TRW max-product solves the first-order LP relaxation.
- (c) **Persistence for binary problems:** Let $S \subseteq V$ be the subset of vertices for which there exists a single point $x_s^* \in \arg \max_{x_s} \nu_s^*(x_s)$. Then for any optimal solution, it holds that $y_s = x_s^*$.

On-going work on LPs and conic relaxations

- tree-reweighted max-product solves first-order LP for any binary pairwise problem (Kolmogorov & Wainwright, 2005)
- convergent dual ascent scheme; LP-optimal for binary pairwise problems (Globerson & Jaakkola, 2007)
- convex free energies and zero-temperature limits (Wainwright et al., 2005, Weiss et al., 2006; Johnson et al., 2007)
- coding problems: adaptive cutting-plane methods (Taghavi & Siegel, 2006; Dimakis et al., 2006)
- dual decomposition and sub-gradient methods: (Feldman et al., 2003; Komodakis et al., 2007, Duchi et al., 2007)
- solving higher-order relaxations; rounding schemes (e.g., Sontag et al., 2008; Ravikumar et al., 2008)

Hierarchies of conic programming relaxations

- tree-based LP relaxation using $\mathbb{L}(G)$: first in a hierarchy of hypertree-based relaxations (Wainwright & Jordan, 2004)
- hierarchies of SDP relaxations for polynomial programming (Lasserre, 2001; Parrilo, 2002)
- intermediate between LP and SDP: second-order cone programming (SOCP) relaxations (Ravikumar & Lafferty, 2006; Kumar et al., 2008)
- all relaxations: particular outer bounds on the marginal polyope

Key questions:

- when are particular relaxations tight?
- when does more computation (e.g., LP \rightarrow SOCP \rightarrow SDP) yield performance gains?

Outline

- 1. Max-product, linear programming, and other conic relaxations
 - (a) Max-product and variational interpretation
 - (b) Marginal polytopes
 - (c) Linear programming and tree-reweighted max-product
 - (d) Conic relaxations and on-going work
- 2. Variational methods for integration/summation
 - (a) Exponential families and maximum entropy
 - (b) Core variational principle
- 3. Algorithms from the variational principle
 - (a) Exact methods for Gaussians
 - (b) Belief-propagation/sum-product
 - (c) Expectation-propagation
 - (d) Convex relaxations

§2. Variational principles for summation

Undirected graphical model:

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{C \in \mathbf{C}} \exp \left\{ \theta_C(x_C) \right\}.$$

Core computational challenges

(a) computing most probable configurations $\hat{\mathbf{x}} \in \arg \max_{\mathbf{x} \in \mathcal{X}^N} p(\mathbf{x})$

(b) computing normalization constant ${\cal Z}$

(c) computing local marginal distributions (e.g., $p(x_s) = \sum_{x_t, t \neq s} p(\mathbf{x})$)

Variational formulation of problems (b) and (c): not immediately obvious!

Approach: Develop variational representations using exponential families, and convex duality.

Maximum entropy formulation of graphical models

- suppose that we have measurements $\widehat{\mu}$ of the average values of some (local) functions $\phi_{\alpha} : \mathcal{X}^n \to \mathbb{R}$
- in general, will be many distributions p that satisfy the measurement constraints $\mathbb{E}_p[\phi_\alpha(\mathbf{x})] = \hat{\mu}$
- will consider finding the *p* with maximum "uncertainty" subject to the observations, with uncertainty measured by **entropy**

$$H(p) = -\sum_{\mathbf{x}} p(\mathbf{x}) \log p(\mathbf{x}).$$

Constrained maximum entropy problem: Find \widehat{p} to solve

$$\max_{p \in \mathcal{P}} \frac{H(p)}{p} \quad \text{such that} \quad \mathbb{E}_p[\phi_\alpha(\mathbf{x})] = \widehat{\mu}$$

• elementary argument with Lagrange multipliers shows that solution belongs to exponential family

$$\widehat{p}(\mathbf{x};\theta) \propto \exp\{\sum_{\alpha\in\mathcal{I}}\theta_{\alpha}\phi_{\alpha}(\mathbf{x})\}.$$

Examples: Scalar exponential families

Family	X	ν	$\log p(\mathbf{x}; heta)$	A(heta)
Bernoulli	$\{0, 1\}$	Counting	$\theta x - A(\theta)$	$\log[1 + \exp(\theta)]$
Gaussian	\mathbb{R}	Lebesgue	$\theta_1 x + \theta_2 x^2 - A(\theta)$	$\frac{1}{2} \left[\theta_1 + \log \frac{2\pi e}{-\theta_2} \right]$
Exponential	$(0, +\infty)$	Lebesgue	$\theta\left(-x\right) - A(\theta)$	$-\log heta$
Poisson	$\{0, 1, 2 \ldots\}$	Counting $h(x) = 1/x!$	$\theta x - A(\theta)$	$\exp(heta)$

• parameterized family of densities (w.r.t. some base measure)

$$p(\mathbf{x};\theta) = \exp\left\{\sum_{\alpha} \theta_{\alpha} \phi_{\alpha}(\mathbf{x}) - A(\theta)\right\}$$

• cumulant generating function (log normalization constant):

$$A(\theta) = \log \left(\int \exp\{\langle \theta, \, \boldsymbol{\phi}(\mathbf{x}) \rangle\} \boldsymbol{\nu}(d\mathbf{x}) \right)$$

Example: Discrete Markov random field

$$\mathbb{I}_{j}(x_{s}) = \begin{cases} 1 & \text{if } x_{s} = j \\ 0 & \text{otherwise} \end{cases}$$

Parameters:

$$\theta_s = \{\theta_{s;j}, j \in \mathcal{X}_s\}$$
$$\theta_{st} = \{\theta_{st;jk}, (j,k) \in \mathcal{X}_s \times \mathcal{X}_t\}$$

$$\begin{array}{ll} \underline{\text{Compact form:}} & \theta_s(x_s) := \sum_j \theta_{s;j} \mathbb{I}_j(x_s) \\ & \theta_{st}(x_s, x_t) := \sum_{j,k} \theta_{st;jk} \mathbb{I}_j(x_s) \mathbb{I}_k(x_t) \end{array}$$

Probability mass function of form:

$$p(\mathbf{x}; \theta) \propto \exp \left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right\}$$

Cumulant generating function (log normalization constant):

$$A(\theta) = \log \sum_{\mathbf{x} \in \mathcal{X}^n} \exp \left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right\}$$
Special case: Hidden Markov model

• Markov chain $\{X_1, X_2, \ldots\}$ evolving in time, with noisy observation Y_t at each time t

- an HMM is a particular type of discrete MRF, representing the conditional $p(\mathbf{x} | \mathbf{y}; \theta)$
- exponential parameters have a concrete interpretation

 $\theta_{23}(x_2, x_3) = \log p(x_3 | x_2)$ $\theta_5(x_5) = \log p(y_5 | x_5)$

• the cumulant generating function $A(\theta)$ is equal to the log likelihood $\log p(\mathbf{y}; \theta)$

Example: Multivariate Gaussian

 $U(\theta)$: Matrix of natural parameters $\phi(\mathbf{x})$: Matrix of sufficient statistics

$$\begin{bmatrix} 0 & \theta_1 & \theta_2 & \dots & \theta_n \\ \theta_1 & \theta_{11} & \theta_{12} & \dots & \theta_{1n} \\ \theta_2 & \theta_{21} & \theta_{22} & \dots & \theta_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \theta_n & \theta_{n1} & \theta_{n2} & \dots & \theta_{nn} \end{bmatrix} \qquad \begin{bmatrix} 1 & x_1 & x_2 & \dots & x_n \\ x_1 & (x_1)^2 & x_1x_2 & \dots & x_1x_n \\ x_2 & x_2x_1 & (x_2)^2 & \dots & x_2x_n \\ \vdots & \vdots & \vdots & \vdots \\ x_n & x_nx_1 & x_nx_2 & \dots & (x_n)^2 \end{bmatrix}$$

Edgewise natural parameters $\theta_{st} = \theta_{ts}$ must respect graph structure:

(a) Graph structure (b) Structure of $[Z(\theta)]_{st} = \theta_{st}$.

Example: Mixture of Gaussians

- can form *mixture models* by combining different types of random variables
- let Y_s be conditionally Gaussian given the discrete variable X_s with parameters $\gamma_{s;j} = (\mu_{s;j}, \sigma_{s;j}^2)$:
 - $X_{s} \bigoplus p(x_{s}; \theta_{s})$ $X_{s} \equiv \text{mixture indicator}$ $p(y_{s} | x_{s}; \gamma_{s})$ $Y_{s} \equiv \text{mixture of Gaussian}$
- couple the mixture indicators $\mathbf{X} = \{X_s, s \in V\}$ using a discrete MRF
- overall model has the exponential form

$$p(\mathbf{y}, \mathbf{x}; \theta, \gamma) \propto \prod_{s \in V} p(y_s | x_s; \gamma_s) \exp \left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right] \right\}.$$

Conjugate dual functions

- conjugate duality is a fertile source of variational representations
- any function f can be used to define another function f^* as follows:

$$f^*(v) := \sup_{u \in \mathbb{R}^n} \{ \langle v, u \rangle - f(u) \}.$$

- easy to show that f^* is always a convex function
- how about taking the "dual of the dual"? I.e., what is $(f^*)^*$?
- when f is well-behaved (convex and lower semi-continuous), we have $(f^*)^* = f$, or alternatively stated:

$$f(u) = \sup_{v \in \mathbb{R}^n} \left\{ \langle u, v \rangle - f^*(v) \right\}$$

Geometric view: Supporting hyperplanes

Question: Given all hyperplanes in $\mathbb{R}^n \times \mathbb{R}$ with normal (v, -1), what is the intercept of the one that supports epi(f)? f(u) $\langle v, u \rangle - c_a$ Epigraph of f: $epi(f) := \{ (u, \beta) \in \mathbb{R}^{n+1} \mid f(u) \le \beta \}.$ $\langle v, u \rangle - c_b$ $-c_a$ $-C_b$

Analytically, we require the smallest $c \in \mathbb{R}$ such that:

 $\langle v, u \rangle - c \leq f(u) \text{ for all } u \in \mathbb{R}^n$

By re-arranging, we find that this optimal c^* is the dual value:

$$c^* = \sup_{u \in \mathbb{R}^n} \{ \langle v, u \rangle - f(u) \}.$$

Example: Single Bernoulli

More general computation of the dual A^*

• consider the definition of the dual function:

$$A^*(\mu) = \sup_{\theta \in \mathbb{R}^d} \left\{ \langle \mu, \theta \rangle - A(\theta) \right\}.$$

• taking derivatives w.r.t θ to find a stationary point yields:

$$\mu - \nabla A(\theta) = 0.$$

• <u>Useful fact:</u> Derivatives of A yield mean parameters:

$$\frac{\partial A}{\partial \theta_{\alpha}}(\theta) = \mathbb{E}_{\theta}[\phi_{\alpha}(\mathbf{X})] := \int \phi_{\alpha}(\mathbf{x})p(\mathbf{x};\theta)\boldsymbol{\nu}(\mathbf{x}).$$

Thus, stationary points satisfy the equation:

$$\mu \hspace{0.1 cm} = \hspace{0.1 cm} \mathbb{E}_{ heta}[oldsymbol{\phi}(\mathbf{X})]$$

(1)

Computation of dual (continued)

- assume solution $\theta(\mu)$ to equation $\mu = \mathbb{E}_{\theta}[\phi(\mathbf{X})]$
- strict concavity of objective guarantees that $\theta(\mu)$ attains global maximum with value

$$A^{*}(\mu) = \langle \mu, \theta(\mu) \rangle - A(\theta(\mu))$$

= $\mathbb{E}_{\theta(\mu)} \Big[\langle \theta(\mu), \phi(\mathbf{X}) \rangle - A(\theta(\mu)) \Big]$
= $\mathbb{E}_{\theta(\mu)} [\log p(\mathbf{X}; \theta(\mu))]$

• recall the definition of *entropy*:

$$H(p(\mathbf{x})) := -\int \left[\log p(\mathbf{x})\right] p(\mathbf{x}) \boldsymbol{\nu}(d\mathbf{x})$$

• thus, we recognize that $A^*(\mu) = -H(p(\mathbf{x}; \theta(\mu)))$ when equation (*) has a solution

Question: For which $\mu \in \mathbb{R}^d$ does equation (*) have a solution $\theta(\mu)$?

(*)

Sets of realizable mean parameters

• for any distribution $p(\cdot)$, define a vector $\mu \in \mathbb{R}^d$ of mean parameters:

$$\mu_{\alpha} := \int \phi_{\alpha}(\mathbf{x}) p(\mathbf{x}) \boldsymbol{\nu}(d\mathbf{x})$$

• now consider the set $\mathbb{M}(G; \phi)$ of all realizable mean parameters:

$$\mathbb{M}(G; \boldsymbol{\phi}) = \left\{ \mu \in \mathbb{R}^d \mid \mu_{\alpha} = \int \phi_{\alpha}(\mathbf{x}) p(\mathbf{x}) \boldsymbol{\nu}(d\mathbf{x}) \quad \text{for some } p(\cdot) \right\}$$

• for discrete families, we refer to this set as a marginal polytope (as discussed previously)

Examples of \mathbb{M} : Gaussian MRF

$\boldsymbol{\phi}(\mathbf{x})$	\mathbf{x}) Matrix of sufficient statistics					$U(\mu)$ Matrix of mean parameters					
$\left[1 \right]$	x_1	x_2		x_n	ſ	- 1	μ_1	μ_2		μ_n	
x_1	$(x_1)^2$	$x_1 x_2$	•••	x_1x_n		μ_1	μ_{11}	μ_{12}	•••	μ_{1n}	
x_2	$x_{2}x_{1}$	$(x_2)^2$	•••	x_2x_n		μ_2	μ_{21}	μ_{22}	•••	μ_{2n}	
	• •	• •	• •			• •	• •	• •	• •	•	
$\lfloor x_n$	$x_n x_1$	$x_n x_2$	•••	$(x_n)^2$		μ_n	μ_{n1}	μ_{n2}	•••	μ_{nn}	

• Gaussian mean parameters are specified by a single semidefinite constraint as $\mathbb{M}_{Gauss} = \{\mu \in \mathbb{R}^{n + \binom{n}{2}} \mid U(\mu) \succeq 0\}.$

Examples of \mathbb{M} : Discrete MRF

- sufficient statistics: $\begin{aligned} \mathbb{I}_{j}(x_{s}) & \text{for } s = 1, \dots n, \quad j \in \mathcal{X}_{s} \\ \mathbb{I}_{jk}(x_{s}, x_{t}) & \text{for}(s, t) \in E, \quad (j, k) \in \mathcal{X}_{s} \times \mathcal{X}_{t} \end{aligned}$
- mean parameters are simply marginal probabilities, represented as:

$$\mu_s(x_s) := \sum_{j \in \mathcal{X}_s} \mu_{s;j} \mathbb{I}_j(x_s), \qquad \mu_{st}(x_s, x_t) := \sum_{(j,k) \in \mathcal{X}_s \times \mathcal{X}_t} \mu_{st;jk} \mathbb{I}_{jk}(x_s, x_t)$$

- denote the set of realizable μ_s and μ_{st} by $\mathbb{M}(G)$
- refer to it as the marginal polytope
- extremely difficult to characterize for general graphs

For suitable classes of graphical models in exponential form, the gradient map ∇A is a bijection between Θ and the interior of \mathbb{M} .

(e.g., Brown, 1986; Efron, 1978)

Variational principle in terms of mean parameters

• The conjugate dual of A takes the form:

$$A^{*}(\mu) = \begin{cases} -H(p(\mathbf{x}; \theta(\mu))) & \text{if } \mu \in \operatorname{int} \mathbb{M}(G; \phi) \\ +\infty & \text{if } \mu \notin \operatorname{cl} \mathbb{M}(G; \phi). \end{cases}$$

Interpretation:

- $A^*(\mu)$ is finite (and equal to a certain negative entropy) for any μ that is globally realizable
- if $\mu \notin \operatorname{cl} \mathbb{M}(G; \phi)$, then the max. entropy problem is *infeasible*
- The cumulant generating function A has the representation:

$$\underbrace{A(\theta)}_{\mu \in \mathbb{M}(G;\phi)} = \sup_{\substack{\mu \in \mathbb{M}(G;\phi)}} \{ \langle \theta, \mu \rangle - A^*(\mu) \},$$

cumulant generating func. max. ent. problem over M

• in contrast to the "free energy" approach, solving this problem provides both the value $A(\theta)$ and the exact mean parameters $\hat{\mu}_{\alpha} = \mathbb{E}_{\theta}[\phi_{\alpha}(\mathbf{x})]$

Alternative view: Kullback-Leibler divergence

• Kullback-Leibler divergence defines "distance" between probability distributions:

$$D(p || q) := \int \left[\log \frac{p(\mathbf{x})}{q(\mathbf{x})} \right] p(\mathbf{x}) \boldsymbol{\nu}(d\mathbf{x})$$

- for two exponential family members $p(\mathbf{x}; \theta^1)$ and $p(\mathbf{x}; \theta^2)$, we have $D(p(\mathbf{x}; \theta^1) || p(\mathbf{x}; \theta^2)) = A(\theta^2) - A(\theta^1) - \langle \mu^1, \theta^2 - \theta^1 \rangle$
- substituting $A(\theta^1) = \langle \theta^1, \mu^1 \rangle A^*(\mu^1)$ yields a mixed form: $D(p(\mathbf{x}; \theta^1) || p(\mathbf{x}; \theta^2)) \equiv D(\mu^1 || \theta^2) = A(\theta^2) + A^*(\mu^1) - \langle \mu^1, \theta^2 \rangle$

Hence, the following two assertions are equivalent:

$$A(\theta^2) = \sup_{\substack{\mu^1 \in \mathbb{M}(G; \phi)}} \{ \langle \theta^2, \mu^1 \rangle - A^*(\mu^1) \}$$
$$0 = \inf_{\substack{\mu^1 \in \mathbb{M}(G; \phi)}} D(\mu^1 || \theta^2)$$

Outline

- 1. Max-product, linear programming, and other conic relaxations
 - (a) Max-product and variational interpretation
 - (b) Marginal polytopes
 - (c) Linear programming and tree-reweighted max-product
 - (d) Conic relaxations and on-going work
- 2. Variational methods for integration/summation
 - (a) Exponential families and maximum entropy
 - (b) Core variational principle
- 3. Algorithms from the variational principle
 - (a) Exact methods for Gaussians
 - (b) Belief-propagation/sum-product
 - (c) Expectation-propagation
 - (d) Convex relaxations

§3. Algorithms from the variational principle Some challenges:

- 1. Mean parameter spaces M: very difficult to characterize!
- 2. Negative entropy $A^*(\mu)$: typically lacks explicit form in terms of μ .

Derivation of algorithms:

- 1. Certain cases: variational problem is exactly solvable:
 - belief propagation on trees/junction trees
 - Gaussians
- 2. Other problems: variational principle is intractable, but can be relaxed.
 - belief propagation on arbitrary graphs
 - generalized belief propagation
 - expectation-propagation
 - mean-field methods
 - convex relaxations

Example: Multivariate Gaussian (fixed covariance)

Consider the set of all Gaussians with fixed *inverse* covariance $Q \succ 0$.

- potentials $\phi(\mathbf{x}) = \{x_1, \dots, x_n\}$ and natural parameter $\theta \in \Theta = \mathbb{R}^n$.
- cumulant generating function:

$$A(\theta) = \log \int_{\mathbb{R}^n} \exp\left\{\sum_{s=1}^n \theta_s x_s\right\} = \exp\left\{-\frac{1}{2}\mathbf{x}^T Q \mathbf{x}\right\} d\mathbf{x}$$

base measure

- completing the square yields $A(\theta) = \frac{1}{2}\theta^T Q^{-1}\theta + \text{constant}$
- straightforward computation leads to the dual $A^*(\mu) = \frac{1}{2}\mu^T Q\mu - \text{constant}$
- putting the pieces back together yields the variational principle

$$A(\theta) = \sup_{\mu \in \mathbb{R}^n} \left\{ \theta^T \mu - \frac{1}{2} \mu^T Q \mu \right\} + \text{constant}$$

• optimum is uniquely obtained at the familiar Gaussian mean $\hat{\mu} = Q^{-1}\theta$.

Example: Multivariate Gaussian (arbitrary cov.)

• matrices of sufficient statistics, natural parameters, and mean parameters:

$$\boldsymbol{\phi}(\mathbf{X}) = \begin{bmatrix} 1 \\ \mathbf{X} \end{bmatrix} \begin{bmatrix} 1 & \mathbf{X} \end{bmatrix}, \quad U(\theta) := \begin{bmatrix} 0 & [\theta_s] \\ [\theta_s] & [\theta_{st}] \end{bmatrix} \quad U(\mu) := \mathbb{E} \left\{ \begin{bmatrix} 1 \\ \mathbf{X} \end{bmatrix} \begin{bmatrix} 1 & \mathbf{X} \end{bmatrix} \right\}$$

• cumulant generating function:

$$A(\theta) = \log \int \exp \left\{ \operatorname{trace}(U(\theta) \, \boldsymbol{\phi}(\mathbf{x})) \right\} d\mathbf{x}$$

• computing the dual function:

$$A^*(\mu) = -\frac{1}{2}\log \det U(\mu) - \frac{n}{2}\log 2\pi e,$$

• exact variational principle is a *log-determinant problem*:

$$A(\theta) = \sup_{U(\mu) \succ 0, \ [U(\mu)]_{11}=1} \Big\{ \operatorname{trace}(U(\theta) \, U(\mu)) + \frac{1}{2} \log \det U(\mu) \Big\} + C \Big\}.$$

• solution yields the *normal equations* for Gaussian mean and covariance.

Example: Belief propagation and Bethe principle

Problem set-up

- discrete variables $X_s \in \{0, 1, \dots, m_s 1\}$ on graph G = (V, E)
- sufficient statistics: indicator functions for each node and edge

$$\mathbb{I}_{j}(x_{s}) \quad \text{for} \quad s = 1, \dots n, \quad j \in \mathcal{X}_{s}$$
$$\mathbb{I}_{jk}(x_{s}, x_{t}) \quad \text{for} \quad (s, t) \in E, \quad (j, k) \in \mathcal{X}_{s} \times \mathcal{X}_{t},$$

• exponential representation of distribution:

$$p(\mathbf{x};\theta) \propto \exp\left\{\sum_{s\in V} \theta_s(x_s) + \sum_{(s,t)\in E} \theta_{st}(x_s,x_t)\right\}$$

where $\theta_s(x_s) := \sum_{j \in \mathcal{X}_s} \theta_{s;j} \mathbb{I}_j(x_s)$ (and similarly for $\theta_{st}(x_s, x_t)$)

Two main ingredients:

- 1. Exact entropy $-A^*(\mu)$ is intractable, so let's approximate it.
- 2. The marginal polytope $\mathbb{M}(G)$ is also difficult to characterize, so let's use the tree-based outer bound $\mathbb{L}(G)$.

Bethe entropy approximation

• mean parameters are simply marginal probabilities, represented as:

$$\mu_s(x_s) := \sum_{j \in \mathcal{X}_s} \mu_{s;j} \mathbb{I}_j(x_s), \qquad \mu_{st}(x_s, x_t) := \sum_{(j,k) \in \mathcal{X}_s \times \mathcal{X}_t} \mu_{st;jk} \mathbb{I}_{jk}(x_s, x_t)$$

• Bethe entropy approximation

$$-A^*_{Bethe}(\mu) = \sum_{s \in V} \frac{H_s(\mu_s)}{(s,t) \in E} - \sum_{(s,t) \in E} I_{st}(\mu_{st}),$$

where

Single node entropy:
$$H_s(\mu_s) := -\sum_{x_s} \mu_s(x_s) \log \mu_s(x_s)$$

Mutual information: $I_{st}(\mu_{st}) := \sum_{x_s, x_t} \mu_{st}(x_s, x_t) \log \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s)\mu_t(x_t)}.$

• exact for trees, using the factorization:

$$p(\mathbf{x};\theta) = \prod_{s \in V} \mu_s(x_s) \prod_{(s,t) \in E} \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s)\mu_t(x_t)}$$

Bethe variational principle

• Be he entropy approximation, and outer bound $\mathbb{L}(G)$:

$$\mathbb{L}(G) = \left\{ \vec{\tau} \mid \sum_{x_s} \tau_s(x_s) = 1, \quad \sum_{x'_t} \tau_{st}(x_s, x'_t) = \tau_s(x_s) \right\}.$$

• combining these ingredients leads to the *Bethe variational prorblem* (BVP):

$$\max_{\tau \in \mathbb{L}(G)} \left\{ \langle \theta, \tau \rangle + \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} I_{st}(\tau_{st}) \right\}$$

Key fact: Belief propagation can be derived as an iterative method for solving a Lagrangian formulation of the BVP (Yedidia et al., 2002)

Lagrangian derivation of belief propagation

- let's try to solve this problem by a (partial) Lagrangian formulation
- assign a Lagrange multiplier $\lambda_{ts}(x_s)$ for each constraint $C_{ts}(x_s) := \tau_s(x_s) \sum_{x_t} \tau_{st}(x_s, x_t) = 0$
- will enforce the normalization $(\sum_{x_s} \tau_s(x_s) = 1)$ and non-negativity constraints explicitly
- the Lagrangian takes the form:

$$\mathcal{L}(\tau;\lambda) = \langle \theta, \tau \rangle + \sum_{s \in V} H_s(\tau_s) - \sum_{(s,t) \in E(G)} I_{st}(\tau_{st}) + \sum_{(s,t) \in E} \left[\sum_{x_t} \lambda_{st}(x_t) C_{st}(x_t) + \sum_{x_s} \lambda_{ts}(x_s) C_{ts}(x_s) \right]$$

Lagrangian derivation (part II)

• taking derivatives of the Lagrangian w.r.t τ_s and τ_{st} yields

$$\frac{\partial \mathcal{L}}{\partial \tau_s(x_s)} = \theta_s(x_s) - \log \tau_s(x_s) + \sum_{t \in \mathcal{N}(s)} \lambda_{ts}(x_s) + C$$
$$\frac{\partial \mathcal{L}}{\partial \tau_{st}(x_s, x_t)} = \theta_{st}(x_s, x_t) - \log \frac{\tau_{st}(x_s, x_t)}{\tau_s(x_s)\tau_t(x_t)} - \lambda_{ts}(x_s) - \lambda_{st}(x_t) + C'$$

• setting these partial derivatives to zero and simplifying:

$$\tau_{s}(x_{s}) \propto \exp \left\{ \theta_{s}(x_{s}) \right\} \prod_{t \in \mathcal{N}(s)} \exp \left\{ \lambda_{ts}(x_{s}) \right\}$$
$$\tau_{s}(x_{s}, x_{t}) \propto \exp \left\{ \theta_{s}(x_{s}) + \theta_{t}(x_{t}) + \theta_{st}(x_{s}, x_{t}) \right\} \times$$
$$\prod_{u \in \mathcal{N}(s) \setminus t} \exp \left\{ \lambda_{us}(x_{s}) \right\} \prod_{v \in \mathcal{N}(t) \setminus s} \exp \left\{ \lambda_{vt}(x_{t}) \right\}$$

• enforcing the constraint $C_{ts}(x_s) = 0$ on these representations yields the familiar update rule for the messages $M_{ts}(x_s) = \exp(\lambda_{ts}(x_s))$:

$$M_{ts}(x_s) \leftarrow \sum_{x_t} \exp\left\{\theta_t(x_t) + \theta_{st}(x_s, x_t)\right\} \prod_{u \in \mathcal{N}(t) \setminus s} M_{ut}(x_t)$$

Geometry of Bethe variational problem μ_{int}

- belief propagation uses a *polyhedral outer approximation* to $\mathbb{M}(G)$:
 - for any graph, $\mathbb{L}(G) \supseteq \mathbb{M}(G)$.

 $\mathbb{L}(G)$

- equality holds \iff G is a tree.

Natural question: Do BP fixed points ever fall outside of the marginal polytope $\mathbb{M}(G)$?

- can verify that $\tau \in \mathbb{L}(G)$, and that τ is a fixed point of belief propagation (with all constant messages)
- however, τ is globally inconsistent

Note: More generally: for any τ in the interior of $\mathbb{L}(G)$, can construct a distribution with τ as a BP fixed point.

High-level perspective: A broad class of methods

- message-passing algorithms (e.g., mean field, belief propagation) are solving approximate versions of exact variational principle in exponential families
- there are two *distinct* components to approximations:
 - (a) can use either inner or outer bounds to \mathbb{M}
 - (b) various approximations to entropy function $-A^*(\mu)$

Refining one or both components yields better approximations:

- <u>BP:</u> polyhedral outer bound and <u>non-convex Bethe approximation</u>
- <u>Kikuchi and variants:</u> tighter polyhedral outer bounds and better entropy approximations (e.g.,Yedidia et al., 2002)
- Expectation-propagation: better outer bounds and Bethe-like entropy approximations (Minka, 2002)

Generalized belief propagation on hypergraphs

(Yedidia et al., 2002)

- a *hypergraph* is a natural generalization of a graph
- it consists of a set of vertices V and a set E of hyperedges, where each *hyperedge* is a subset of V

Hypertree factorization

- for each hyperedge: $\log \varphi_h(x_h) := \sum_{g \subseteq h} (-1)^{|h \setminus g|} [\log \tau_g(x_g)].$
- any hypertree-structured distribution is guaranteed to factor as:

$$p(\mathbf{x}) = \prod_{h \in E} \varphi_h(x_h).$$

- Ordinary tree: $\varphi_s(x_s) = \mu_s(x_s)$ for any vertex s $\varphi_{st}(x_s, x_t) = \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \ \mu_t(x_t)}$ for edge (s, t).
- Hypertree:

$$\varphi_{1245} = \frac{\mu_{1245}}{\frac{\mu_{25}}{\mu_5}\frac{\mu_{45}}{\mu_5}\mu_5}$$
$$\varphi_{45} = \frac{\mu_{45}}{\mu_5}$$
$$\varphi_{5} = \mu_5$$

Building augmented hypergraphs

Better entropy approximations via augmented hypergraphs.

(a) Original

(b) Clustering

(c) Full covering

(d) Kikuchi

(e) Fails single counting

Expectation-propagation (EP)

- originally derived in terms of assumed density filtering (Minka, 2002)
- another instance of a relaxed variational principle:
 - "Bethe-like" (termwise) approximation to entropy
 - local consistency constraints on marginals
- distribution with tractable/intractable decomposition:

$$f(\mathbf{x}, \gamma, \Gamma) \propto \underbrace{\exp(\langle \gamma, \phi(\mathbf{x}) \rangle)}_{\text{Tractable}} \underbrace{\prod_{i=1}^{k} T_i(\mathbf{x})}_{\text{Intractable}}$$

• auxiliary parameters θ , and term-by-term entropy approx.:

$$H(f) \approx \underbrace{H(q_{base}(\mathbf{x}; \theta, \gamma))}_{\text{Base entropy}} + \underbrace{\sum_{i=1}^{k} \left[H(q_{aug}^{i}(\mathbf{x}; \theta, \gamma, T_{i})) - H(q_{base}(\mathbf{x}; \theta, \gamma)) \right]}_{\text{Term approximations}}$$

Term approximations

EP updates for Gaussian mixtures

• distribution formed by tractable/intractable combination:

$$f(\mathbf{x}, \Sigma) \propto \exp\left(-\frac{1}{2}\mathbf{x}^T \Sigma^{-1} \mathbf{x}\right) \prod_{i=1}^n f(\mathbf{y}^i \mid \mathbf{X} = \mathbf{x})$$

• Gaussian mixture likelihoods

$$f(y^i \mid \mathbf{X} = \mathbf{x}) = \alpha \mathcal{N}(\mathbf{y}^i; 0, \sigma_0^2) + (1 - \alpha) \mathcal{N}(\mathbf{y}^i; \mathbf{x}, \sigma_1^2)$$

- base/augmented distributions take form: Base: $q_{base}(\mathbf{x}; \Sigma, \theta, \Theta) \propto \exp\left(\langle \gamma, x \rangle - \frac{1}{2} \operatorname{trace}(\Theta + \Sigma^{-1} \mathbf{x} \mathbf{x}^T)\right)$ Augmented: $q_{aug}^i(\mathbf{x}; \Sigma, \theta, \Theta, T_i) \propto q(\mathbf{x}; \Sigma, \theta, \Theta) T_i(\mathbf{x}).$
- variational problem: maximize term-by-term entropy approximation, subject to marginalization constraints:

$$\mathbb{E}_{q_{base}}[\mathbf{X}] = \mathbb{E}_{q_{aug}^i}[\mathbf{X}]$$
$$\mathbb{E}_{q_{base}}[\mathbf{X}\mathbf{X}^{\mathbf{T}}] = \mathbb{E}_{q_{aug}^i}[\mathbf{X}\mathbf{X}^{\mathbf{T}}].$$

Convex relaxations and upper bounds

Possible concerns with Bethe/Kikuchi, expectation-propagation etc.?

- (a) lack of convexity \Rightarrow multiple local optima, and algorithmic complications
- (b) failure to bound the log partition function

Goal: Techniques for approximate computation of marginals and parameter estimation based on:

- (a) convex variational problems \Rightarrow unique global optimum
- (b) relaxations of exact problem \Rightarrow upper bounds on $A(\theta)$

Usefulness of bounds:

- (a) interval estimates for marginals
- (b) approximate parameter estimation
- (c) large deviations (prob. of rare events)

Bounds from "convexified" Bethe/Kikuchi problems

Idea: Upper bound $-A^*(\mu)$ by convex combination of tree-structured entropies.

• given any spanning tree T, define the moment-matched tree distribution:

$$p(\mathbf{x};\mu(T)) := \prod_{s \in V} \mu_s(x_s) \prod_{(s,t) \in E} \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \ \mu_t(x_t)}$$

• use $-A^*(\mu(T))$ to denote the associated tree entropy

• let $\rho = \{\rho(T)\}$ be a probability distribution over spanning trees

Optimal bounds by tree-reweighted message-passing

Recall the constraint set of locally consistent marginal distributions:

$$\mathbb{L}(G) = \{ \tau \ge 0 \mid \underbrace{\sum_{x_s} \tau_s(x_s) = 1}_{\text{normalization}}, \underbrace{\sum_{x_s} \tau_{st}(x_s, x_t) = \tau_t(x_t) }_{\text{marginalization}} \}$$

Theorem:

(Wainwright et al., UAI-02)

(a) For any given edge weights $\rho_e = \{\rho_e\}$ in the spanning tree polytope, the optimal upper bound over *all* tree parameters is given by:

$$A(\theta) \leq \max_{\tau \in \mathbb{L}(G)} \left\{ \langle \theta, \tau \rangle + \sum_{s \in V} H_s(\tau_s) - \sum_{(s,t) \in E} \rho_{st} I_{st}(\tau_{st}) \right\}.$$

(b) This optimization problem is strictly convex, and its unique optimum is specified by the fixed point of ρ_e -reweighted sum-product:

$$M_{ts}^*(x_s) = \kappa \sum_{x_t' \in \mathcal{X}_t} \left\{ \exp\left[\frac{\theta_{st}(x_s, x_t')}{\rho_{st}} + \theta_t(x_t')\right] \frac{\prod_{v \in \Gamma(t) \setminus s} \left[M_{vt}^*(x_t)\right]^{\rho_{vt}}}{\left[M_{st}^*(x_t)\right]^{(1-\rho_{ts})}} \right\}.$$

Semidefinite constraints in convex relaxations

Fact: Belief propagation and its hypergraph-based generalizations all involve polyhedral (i.e., *linear*) outer bounds on the marginal polytope.

Idea: Semidefinite constraints to generate more global outer bounds.

Example: For the Ising model, relevant mean parameters are $\mu_s = p(X_s = 1)$ and $\mu_{st} = p(X_s = 1, X_t = 1)$.

Define $\mathbf{Y} = \begin{bmatrix} 1 & \mathbf{X} \end{bmatrix}^T$, and consider the second-order moment matrix:

$$\mathbb{E}[\mathbf{Y}\mathbf{Y}^{T}] = \begin{bmatrix} 1 & \mu_{1} & \mu_{2} & \dots & \mu_{n} \\ \mu_{1} & \mu_{1} & \mu_{12} & \dots & \mu_{1n} \\ \mu_{2} & \mu_{12} & \mu_{2} & \dots & \mu_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \mu_{n} & \mu_{n1} & \mu_{n2} & \dots & \mu_{n} \end{bmatrix} = M_{1}[\mu].$$

- since it must be positive semidefinite, this (an infinite number of) linear constraints on μ_s, μ_{st} .
- defines the first-order semidefinite relaxation of $\mathbb{M}(G)$:

$$\mathbb{S}(G) = \left\{ \mu \in \mathbb{R}^d \mid M_1[\mu] \succeq 0 \right\}.$$

Not positive-semidefinite!
Log-determinant relaxation

• based on optimizing over covariance matrices $M_1(\mu) \in \mathbb{S}_1(K_n)$

Theorem: Consider an outer bound $\mathbb{O}(K_n)$ that satisfies:

$$\mathbb{M}(K_n) \subseteq \mathbb{O}(K_n) \subseteq \mathbb{S}_1(K_n)$$

For any such outer bound, $A(\theta)$ is upper bounded by:

$$\max_{\mu \in \mathbb{O}(K_n)} \left\{ \langle \theta, \, \mu \rangle + \frac{1}{2} \log \det \left[M_1(\mu) + \frac{1}{3} \, \mathrm{blkdiag}[0, I_n] \right] \right\} + \frac{n}{2} \log(\frac{\pi e}{2})$$

Remarks:

- 1. Log-det. problem can be solved efficiently by interior point methods.
- 2. Relevance for applications (e.g., Banerjee et al., 2008)
 - (a) Upper bound on $A(\theta)$.
 - (b) Method for computing approximate marginals.

(Wainwright & Jordan, 2003)

Mean field theory

Recap: All variational methods discussed until now are based on:

- *outer bounding* the set of valid mean parameters.
- approximating the entropy (negative dual function $-A^*(\mu)$)

Different idea: Restrict μ to a *subset* of distributions for which $-A^*(\mu)$ has a tractable form.

Examples:

- (a) For product distributions $p(\mathbf{x}) = \prod_{s \in V} \mu_s(x_s)$, entropy decomposes as $-A^*(\mu) = \sum_{s \in V} H_s(x_s)$.
- (b) Similarly, for trees (more generally, decomposable graphs), the junction tree theorem yields an explicit form for $-A^*(\mu)$.

Definition: A subgraph H of G is *tractable* if the entropy has an explicit form for any distribution that respects H.

Geometry of mean field

- let H represent a tractable subgraph (i.e., for which A^* has explicit form)
- let $\mathbb{M}_{tr}(G; H)$ represent tractable mean parameters: 1 2 $\mathbb{M}_{tr}(G;H) := \{ \mu | \ \mu = \mathbb{E}_{\theta}[\phi(\mathbf{x})] \text{ s.t. } \theta \text{ respects } H \}.$ 40 ⁵0 ⁶0 $\begin{array}{ccc} \circ & \circ & \circ \\ 7 & 8 & 9 \end{array}$

3

- $\mu_{\mathbf{e}}$ \mathbb{M}_{tr} \mathbb{M}
- under mild conditions, \mathbb{M}_{tr} is a nonconvex inner approximation to \mathbb{M}
- optimizing over \mathbb{M}_{tr} (as opposed to \mathbb{M}) yields lower bound:

$$A(\theta) \geq \sup_{\widetilde{\mu} \in \mathbb{M}_{tr}} \left\{ \langle \theta, \widetilde{\mu} \rangle - A^*(\widetilde{\mu}) \right\}.$$

Alternative view: Minimizing KL divergence

• recall the *mixed form* of the KL divergence between $p(\mathbf{x}; \theta)$ and $p(\mathbf{x}; \widetilde{\theta})$:

$$D(\widetilde{\mu} \,||\, \theta) = A(\theta) + A^*(\widetilde{\mu}) - \langle \widetilde{\mu}, \, \theta \rangle$$

- try to find the "best" approximation to $p(\mathbf{x}; \theta)$ in the sense of KL divergence
- in analytical terms, the problem of interest is

$$\inf_{\widetilde{\mu}\in\mathbb{M}_{tr}} D(\widetilde{\mu} \,||\, \theta) = A(\theta) + \inf_{\widetilde{\mu}\in\mathbb{M}_{tr}} \left\{ A^*(\widetilde{\mu}) - \langle \widetilde{\mu},\, \theta \rangle \right\}$$

• hence, finding the tightest lower bound on $A(\theta)$ is equivalent to finding the best approximation to $p(\mathbf{x}; \theta)$ from distributions with $\widetilde{\mu} \in \mathbb{M}_{tr}$

Example: Naive mean field algorithm for Ising model

- consider completely disconnected subgraph $H = (V, \emptyset)$
- permissible exponential parameters belong to subspace

$$\mathcal{E}(H) = \{ \theta \in \mathbb{R}^d \mid \theta_{st} = 0 \ \forall \ (s,t) \in E \}$$

• allowed distributions take product form $p(\mathbf{x}; \theta) = \prod_{s \in V} p(x_s; \theta_s)$, and generate

$$\mathbb{M}_{tr}(G;H) = \{ \mu \mid \mu_{st} = \mu_s \mu_t, \ \mu_s \in [0,1] \}.$$

• approximate variational principle:

$$\max_{\mu_{s}\in[0,1]} \bigg\{ \sum_{s\in V} \theta_{s}\mu_{s} + \sum_{(s,t)\in E} \theta_{st}\mu_{s}\mu_{t} - \big[\sum_{s\in V} \mu_{s}\log\mu_{s} + (1-\mu_{s})\log(1-\mu_{s})\big] \bigg\}.$$

• Co-ordinate ascent: with all $\{\mu_t, t \neq s\}$ fixed, problem is strictly concave in μ_s and optimum is attained at

$$\mu_s \leftarrow \left\{1 + \exp\left[-\left(\theta_s + \sum_{t \in \mathcal{N}(s)} \theta_{st} \mu_t\right)\right]\right\}^{-1}$$

Example: Structured mean field for coupled HMM

- entropy of distribution that respects H decouples into sum: one term for each chain.
- *structured mean field updates* are an iterative method for finding the tightest approximation (either in terms of KL or lower bound)

Summary and future directions

- variational methods: statistical/computational tasks converted to optimization problems:
 - (a) complementary to sampling-based methods (e.g., MCMC)
 - (b) require entropy approximations, and characterization of marginal polytopes (sets of valid mean parameters)
 - (c) a variety of new "relaxations" remain to be explored
- many open questions:
 - (a) strong performance guarantees? (only for special cases thus far...)
 - (b) extension to non-parametric settings?
 - (c) hybrid techniques (variational and MCMC)
 - (d) variational methods in parameter estimation
 - (e) fast techniques for solving large-scale relaxations (e.g., SDPs, other convex programs)