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Introduction

• graphical model:
∗ graph G = (V,E) with N vertices

∗ random vector: (X1, X2, . . . , XN)

X1 X2 X3

• useful in many statistical and computational fields:

– machine learning, artificial intelligence

– computational biology, bioinformatics

– statistical signal/image processing, spatial statistics

– statistical physics

– communication and information theory



Graphs and random variables

• associate to each node s ∈ V a random variable Xs

• for each subset A ⊆ V , random vector XA := {Xs, s ∈ A}.
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• a clique C ⊆ V is a subset of vertices all joined by edges

• a vertex cutset is a subset S ⊂ V whose removal breaks the graph

into two or more pieces



Factorization and Markov properties

The graph G can be used to impose constraints on the random vector

X = XV (or on the distribution p) in different ways.

Markov property: X is Markov w.r.t G if XA and XB are

conditionally indpt. given XS whenever S separates A and B.

Factorization: The distribution p factorizes according to G if it can

be expressed as a product over cliques:

p(x1, x2, . . . , xN ) =
1

Z︸︷︷︸

∏

C∈C

ψC(xC)︸ ︷︷ ︸

Normalization compatibility function on clique C

Theorem: (Hammersley & Clifford, 1973) For strictly positive

p(·), the Markov property and the Factorization property are

equivalent.



Example 1: Markov chain

q q

1 2 3 T

1 2 3 T

X X X X

Y Y Y Y

(a) Markov chain (b) Coupled Markov chain

• hidden Markov models (HMMs) are widely used in various applications

discrete Xt: computational biology, speech processing, etc.

Gaussian Xt: control theory, signal processing, etc.

• frequently wish to solve smoothing problem of computing

p(xt | y1, . . . , yT )

• exact computation of marginals/modes in HMMs is tractable (Viterbi;

forward-backward algorithm)

• coupled HMMs require approximation algorithms



Example 2: Social network analysis

Goal: Model interactions among entities in a social network (e.g.,

epidemics, FaceBook, criminals)

Xs
Xt

ψst

Simple illustration based on Ising model : (Ising, 1925)

p(x1, . . . , xN ) =
1

Z

∏

(s,t)∈E

ψst(xs, xt) =
1

Z
exp

( ∑

(s,t)∈E

θstxsxt
)



Example 3: Sensor networks

B

DA

C

(a) Sensors and objects (b) Graphical model

• various statistical inference problems require message-passing on

graphs:

– distributed hypothesis-testing

– smoothing/estimation of surface based on noisy observations

– estimation of model parameters



Example 4: Graphical codes for channel coding

Goal: Achieve reliable communication over a noisy channel.

DecoderEncoder
Channel
Noisy

00000 10010 00000

source

0

replacemen

X Y X̂

• wide variety of applications: satellite communication, sensor

networks, computer memory, neural communication

• error-control codes based on careful addition of redundancy, with

their fundamental limits determined by Shannon theory

• key implementational issues: efficient construction, encoding and

decoding

• very active area of current research: graphical codes (e.g., turbo

codes, LDPC) and message-passing algorithms

(e.g., Gallager, 1963; Berroux et al., 1993; MacKay, 1999; Richardson &

Urbanke, 2001)



Graphical codes and decoding

Parity check matrix Factor graph

H =




1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1




Codeword: [0 1 0 1 0 1 0]

Non-codeword: [0 0 0 0 0 1 1]

ψ1357

ψ2367

ψ4567

x1

x2

x3

x4

x5

x6

x7



Example 5: Lossy data compression

• low-density generator matrix (LDGM) codes are sparse graphical code in

generator form (dual to LDPC)

• n source bits: specifies the parity of associated check

• m information bits: compression rate R = m
n

Source bits

Info. bits

y1 y2 y3 y4 y5 y6 y7

z1 z2 z3 G =




1 0 0

0 1 0

1 1 0

0 0 1

1 0 1

0 1 1

1 1 1




• square nodes � represent mod 2 sums (rows of G)

• circular nodes ◦ represent information bits (columns of G)



Lossy source encoding with LDGM codes

• studied in past work by several groups (Ciliberti et al., 2005; Murayama,

2004; Wainwright & Maneva, 2005; Zecchina et al., 2005 )

Source bits

Info. bits

1 1 0 0 0 1 0

1 1 0 0 1 1 0

1 1 0

• given a source sequence y ∈ {0, 1}n, choose information sequence

z ∈ {0, 1}n to minimize distortion

ẑ = arg min
z∈{0,1}m

‖Gz − y‖1

︸ ︷︷ ︸
equivalent to MAX-XORSAT problem – comp. intractable

• given encoded ẑ ∈ {0, 1}m, decode by matrix multiplication ŷ = Gẑ



Core computational challenges

Given an undirected graphical model (Markov random field):

p(x1, x2, . . . , xN ) =
1

Z

∏

C∈C

ψC(xC)

How to efficiently compute?

• the data likelihood or normalization constant

Sum/integrate : Z =
∑

x∈XN

∏

C∈C

ψC(xC)

• marginal distributions at single sites, or subsets:

Sum/integrate : p(Xs = xs) =
1

Z

∑

xt, t6=s

∏

C∈C

ψC(xC)

• most probable configuration (MAP estimate):

Maximize : x̂ = arg max
x∈XN

p(x1, . . . , xN ) = arg max
x∈XN

∏

C∈C

ψC(xC).



Variational methods

• “variational”: umbrella term for optimization-based formulations

• many modern algorithms are variational in nature:

– dynamic programming, finite-element methods

– max-product message-passing

– sum-product message-passing: generalized belief propagation,

convexified belief propagation, expectation-propagation

– mean field algorithms

Classical example: Courant-Fischer for eigenvalues:

λmax(Q) = max
‖x‖2=1

xTQx

Variational principle: Representation of interesting quantity u⋆ as

the solution of an optimization problem.

1. u⋆ can be analyzed/bounded through “lens” of the optimization

2. approximate u⋆ by relaxing the variational principle



Outline

1. Max-product, linear programming, and other conic relaxations

(a) Max-product and variational interpretation

(b) Marginal polytopes

(c) Linear programming and tree-reweighted max-product

(d) Conic relaxations and on-going work

2. Variational methods for integration/summation

(a) Exponential families and maximum entropy

(b) Core variational principle

3. Algorithms from the variational principle

(a) Exact methods for Gaussians

(b) Belief-propagation/sum-product

(c) Expectation-propagation

(d) Convex relaxations



§1. Convex relaxations and message-passing for MAP

Goal: Compute most probable configuration (MAP estimate) on a tree:

x̂ = arg max
x∈XN





∏

s∈V

exp(θs(xs)
∏

(s,t)∈E

exp(θst(xs, xt))



 .

M12 M32

1 2 3

max
x1,x2,x3

p(x) = max
x2

[
exp(θ1(x1))

∏

t∈1,3

{
max
xt

exp[θt(xt) + θ2t(x2, xt)]

}]

Max-product strategy: “Divide and conquer”: break global

maximization into simpler sub-problems. (Lauritzen & Spiegelhalter, 1988)



Max-product on trees

Decompose: max
x1,x2,x3,x4,x5

p(x) = max
x2

[
exp(θ1(x1))

∏
t∈N(2)Mt2(x2)

]
.

M12 M32

M53

M43

1 2 3

4

5

Update messages:

M32(x2) = max
x3


exp(θ3(x3) + θ23(x2, x3)

∏

v∈N(3)\2

Mv3(x3)






Variational view: Max-product and linear

programming

• MAP as integer program: f∗ = max
x∈XN

{ ∑
s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)
}

• define local marginal distributions (e.g., for m = 3 states):

µs(xs) =









µs(0)

µs(1)

µs(2)









µst(xs, xt) =









µst(0, 0) µst(0, 1) µst(0, 2)

µst(1, 0) µst(1, 1) µst(1, 2)

µst(2, 0) µst(2, 1) µst(2, 2)









• alternative formulation of MAP as linear program?

g∗ = max
(µs,µst)∈M(G)

{∑

s∈V

Eµs
[θs(xs)] +

∑

(s,t)∈E

Eµst
[θst(xs, xt)]

}

Local expectations: Eµs
[θs(xs)] :=

∑

xs

µs(xs)θs(xs).

Key question: What constraints must local marginals {µs, µst}

satisfy?



Marginal polytopes for general undirected models

• M(G) ≡ set of all globally realizable marginals {µs, µst}:


~µ ∈ R

d
∣∣∣ µs(xs) =

∑

xt,t6=s

pµ(x), and µst(xs, xt) =
∑

xu,u6=s,t

pµ(x)





for some pµ(·) over (X1, . . . , XN ) ∈ {0, 1, . . . ,m− 1}N .

M(G)

aTi ~µ ≤ bi

a

• polytope in d = m|V |+m2|E| dimensions (m per vertex, m2 per edge)

• with mN vertices

• number of facets?



Marginal polytope for trees

• M(T ) ≡ special case of marginal polytope for tree T

• local marginal distributions on nodes/edges (e.g., m = 3)

µs(xs) =









µs(0)

µs(1)

µs(2)









µst(xs, xt) =









µst(0, 0) µst(0, 1) µst(0, 2)

µst(1, 0) µst(1, 1) µst(1, 2)

µst(2, 0) µst(2, 1) µst(2, 2)









Deep fact about tree-structured models: If {µs, µst} are non-

negative and locally consistent :

Normalization :
∑

xs

µs(xs) = 1

Marginalization :
∑

x′

t

µst(xs, x
′
t) = µs(xs),

then on any tree-structured graph T , they are globally consistent.

Follows from junction tree theorem (Lauritzen & Spiegelhalter, 1988).



Max-product on trees: Linear program solver

• MAP problem as a simple linear program:

f(x̂) = arg max
~µ∈M(T )




∑

s∈V

Eµs
[θs(xs)] +

∑

(s,t)∈E

Eµst
[θst(xs, xt)]





subject to ~µ in tree marginal polytope:

M(T ) =



~µ ≥ 0,

∑

xs

µs(xs) = 1,
∑

x′

t

µst(xs, x
′
t) = µs(xs)



 .

Max-product and LP solving:

• on tree-structured graphs, max-product is a dual algorithm for

solving the tree LP. (Wai. & Jordan, 2003)

• max-product message Mts(xs) ≡ Lagrange multiplier for en-

forcing the constraint
∑

x′

t
µst(xs, x

′
t) = µs(xs).



Tree-based relaxation for graphs with cycles

Set of locally consistent pseudomarginals for general graph G:

L(G) =

{
~τ ∈ R

d | ~τ ≥ 0,
∑

xs

τs(xs) = 1,
∑

xt

τst(xs, x
′
t) = τs(xs)

}
.

Integral vertex

Fractional vertexM(G)

L(G)

Key: For a general graph, L(G) is an outer bound on M(G), and yields

a linear-programming relaxation of the MAP problem:

f(x̂) = max
~µ∈M(G)

θT ~µ ≤ max
~τ∈L(G)

θT~τ .



Looseness of L(G) with graphs with cycles

Locally consistent

(pseudo)marginals

3

2

1 �0:1 0:40:4 0:1�
�0:4 0:10:1 0:4� �0:50:5��0:50:5�

�0:50:5��0:4 0:10:1 0:4�
Pseudomarginals satisfy the “obvious” local constraints:

Normalization:
∑

x′

s
τs(x

′
s) = 1 for all s ∈ V .

Marginalization:
∑

x′

s
τs(x

′
s, xt) = τt(xt) for all edges (s, t).



Max-product and graphs with cycles

Early and on-going work:

• single-cycle graphs and Gaussian models

(Aji & McEliece, 1998; Horn, 1999; Weiss, 1998, Weiss & Freeman, 2001)

• local optimality guarantees:

– “tree-plus-loop” neighborhoods (Weiss & Freeman, 2001)

– optimality on more general sub-graphs (Wainwright et al., 2003)

• exactness for matching problems (Bayati et al., 2005, 2008, Jebara &

Huang, 2007, Sanghavi, 2008)

A natural “variational” conjecture:

• max-product on trees is a method for solving a linear program

• is max-product solving the first-order LP relaxation on graphs with

cycles?



Standard analysis via computation tree

• standard tool: computation tree of message-passing updates

(Gallager, 1963; Weiss, 2001; Richardson & Urbanke, 2001)
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2

2
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3

3
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4 4

(a) Original graph (b) Computation tree (4 iterations)

• level t of tree: all nodes whose messages reach the root (node 1)

after t iterations of message-passing



Example: Standard max-product does not solve LP

(Wainwright et al., 2005)

Intuition:

• max-product solves (exactly) a modified problem on computation tree

• nodes not equally weighted in computation tree ⇒ max-product can

output an incorrect configuration
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3
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44
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(a) Diamond graph Gdia (b) Computation tree (4 iterations)

• for example: asymptotic node fractions ω in this computation tree:
[
ω(1) ω(2) ω(3) ω(4)

]
=

[
0.2393 0.2607 0.2607 0.2393

]



A whole family of non-exact examples

1

2
3

4

α

α

β

β

θs(xs)







αxs if s = 1 or s = 4

βxs if s = 2 or s = 3

θst(xs, xt) =







−γ if xs 6= xt

0 otherwise

• for γ sufficiently large, optimal solution is always either

14 =
[
1 1 1 1

]
or (−1)4 =

[
(−1) (−1) (−1) (−1)

]

• first-order LP relaxation always exact for this problem

• max-product and LP relaxation give different decision boundaries:

Optimal/LP boundary: x̂ =




14 if 0.25α+ 0.25β ≥ 0

(−1)4 otherwise

Max-product boundary: x̂ =




14 if 0.2393α+ 0.2607β ≥ 0

(−1)4 otherwise



Tree-reweighted max-product algorithm

(Wainwright, Jaakkola & Willsky, 2002)

Message update from node t to node s:

reweighted messages

Mts(xs) ← κ max
x′

t∈Xt

{
exp

[θst(xs, x′t)
ρst︸ ︷︷ ︸

+ θt(x
′
t)
]

∏
v∈Γ(t)\s

︷ ︸︸ ︷[
Mvt(xt)

]ρvt

[
Mst(xt)

](1−ρts)

︸ ︷︷ ︸

}
.

reweighted edge opposite message

Properties:

1. Modified updates remain distributed and purely local over the graph.

2. Key differences:

• Messages are reweighted with ρst ∈ [0, 1].

• Potential on edge (s, t) is rescaled by ρst ∈ [0, 1].

• Update involves the reverse direction edge.

3. The choice ρst = 1 for all edges (s, t) recovers standard update.



Edge appearance probabilities

Experiment: What is the probability ρe that a given edge e ∈ E

belongs to a tree T drawn randomly under ρ?

e

b

f

e

b

f

e

b

f

e

b

f

(a) Original (b) ρ(T 1) = 1
3

(c) ρ(T 2) = 1
3

(d) ρ(T 3) = 1
3

In this example: ρb = 1; ρe =
2
3 ; ρf = 1

3 .

The vector ρe = { ρe | e ∈ E } must belong to the spanning tree

polytope. (Edmonds, 1971)



TRW max-product and LP relaxation

First-order (tree-based) LP relaxation:

f(x̂) ≤ max
~τ∈L(G)




∑

s∈V

Eτs [θs(xs)] +
∑

(s,t)∈E

Eτst [θst(xs, xt)]





Results: (Wainwright et al., 2005; Kolmogorov & Wainwright, 2005):

(a) Strong tree agreement Any TRW fixed-point that satisfies the

strong tree agreement condition specifies an optimal LP solution.

(b) LP solving: For any binary pairwise problem, TRW max-product

solves the first-order LP relaxation.

(c) Persistence for binary problems: Let S ⊆ V be the subset of

vertices for which there exists a single point x∗s ∈ argmaxxs
ν∗s (xs).

Then for any optimal solution, it holds that ys = x∗s.



On-going work on LPs and conic relaxations

• tree-reweighted max-product solves first-order LP for any binary

pairwise problem (Kolmogorov & Wainwright, 2005)

• convergent dual ascent scheme; LP-optimal for binary pairwise

problems (Globerson & Jaakkola, 2007)

• convex free energies and zero-temperature limits

(Wainwright et al., 2005, Weiss et al., 2006; Johnson et al., 2007)

• coding problems: adaptive cutting-plane methods (Taghavi & Siegel,

2006; Dimakis et al., 2006)

• dual decomposition and sub-gradient methods: (Feldman et al., 2003;

Komodakis et al., 2007, Duchi et al., 2007)

• solving higher-order relaxations; rounding schemes (e.g., Sontag et al.,

2008; Ravikumar et al., 2008)



Hierarchies of conic programming relaxations

• tree-based LP relaxation using L(G): first in a hierarchy of

hypertree-based relaxations (Wainwright & Jordan, 2004)

• hierarchies of SDP relaxations for polynomial programming (Lasserre,

2001; Parrilo, 2002)

• intermediate between LP and SDP: second-order cone programming

(SOCP) relaxations (Ravikumar & Lafferty, 2006; Kumar et al., 2008)

• all relaxations: particular outer bounds on the marginal polyope

Key questions:

• when are particular relaxations tight?

• when does more computation (e.g., LP → SOCP → SDP) yield

performance gains?



Outline

1. Max-product, linear programming, and other conic relaxations

(a) Max-product and variational interpretation

(b) Marginal polytopes

(c) Linear programming and tree-reweighted max-product

(d) Conic relaxations and on-going work

2. Variational methods for integration/summation

(a) Exponential families and maximum entropy

(b) Core variational principle

3. Algorithms from the variational principle

(a) Exact methods for Gaussians

(b) Belief-propagation/sum-product

(c) Expectation-propagation

(d) Convex relaxations



§2. Variational principles for summation

Undirected graphical model:

p(x) =
1

Z

∏

C∈C

exp
{
θC(xC)

}
.

Core computational challenges

(a) computing most probable configurations x̂ ∈ arg max
x∈XN

p(x)

(b) computing normalization constant Z

(c) computing local marginal distributions (e.g., p(xs) =
∑

xt,t 6=s

p(x))

Variational formulation of problems (b) and (c): not immediately

obvious!

Approach: Develop variational representations using exponential

families, and convex duality.



Maximum entropy formulation of graphical models

• suppose that we have measurements µ̂ of the average values of

some (local) functions φα : Xn → R

• in general, will be many distributions p that satisfy the

measurement constraints Ep[φα(x)] = µ̂

• will consider finding the p with maximum “uncertainty” subject to

the observations, with uncertainty measured by entropy

H(p) = −
∑

x

p(x) log p(x).

Constrained maximum entropy problem: Find p̂ to solve

max
p∈P

H(p) such that Ep[φα(x)] = µ̂

• elementary argument with Lagrange multipliers shows that solution

belongs to exponential family

p̂(x; θ) ∝ exp
{∑

α∈I

θαφα(x)
}
.



Examples: Scalar exponential families

Family X ν log p(x; θ) A(θ)

Bernoulli {0, 1} Counting θx−A(θ) log[1 + exp(θ)]

Gaussian R Lebesgue θ1x+ θ2x2 − A(θ) 1
2
[θ1 + log 2πe

−θ2
]

Exponential (0,+∞) Lebesgue θ (−x)−A(θ) − log θ

Poisson {0, 1, 2 . . .} Counting θx−A(θ) exp(θ)

h(x) = 1/x!

• parameterized family of densities (w.r.t. some base measure)

p(x; θ) = exp
{∑

α

θαφα(x) − A(θ)
}

• cumulant generating function (log normalization constant):

A(θ) = log
( ∫

exp{〈θ, φ(x)〉}ν(dx)
)



Example: Discrete Markov random field

θst(xs, xt)
θs(xs)θt(xt)

Indicators: I j(xs) =







1 if xs = j

0 otherwise

Parameters: θs = {θs;j , j ∈ Xs}

θst = {θst;jk , (j, k) ∈ Xs × Xt}

Compact form: θs(xs) :=
∑

j θs;j I j(xs)

θst(xs, xt) :=
∑

j,k θst;jkI j(xs)I k(xt)

Probability mass function of form:

p(x; θ) ∝ exp
{∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)
}

Cumulant generating function (log normalization constant):

A(θ) = log
∑

x∈Xn

exp
{∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)
}



Special case: Hidden Markov model

• Markov chain {X1, X2, . . .} evolving in time, with noisy observation

Yt at each time t

θ23(x2, x3)

θ5(x5)

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

• an HMM is a particular type of discrete MRF, representing the

conditional p(x |y; θ)

• exponential parameters have a concrete interpretation

θ23(x2, x3) = log p(x3 |x2)

θ5(x5) = log p(y5 |x5)

• the cumulant generating function A(θ) is equal to the log likelihood

log p(y; θ)



Example: Multivariate Gaussian

U(θ): Matrix of natural parameters φ(x): Matrix of sufficient statistics























0 θ1 θ2 . . . θn

θ1 θ11 θ12 . . . θ1n

θ2 θ21 θ22 . . . θ2n
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

θn θn1 θn2 . . . θnn













































1 x1 x2 . . . xn

x1 (x1)2 x1x2 . . . x1xn

x2 x2x1 (x2)2 . . . x2xn

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

xn xnx1 xnx2 . . . (xn)2























Edgewise natural parameters θst = θts must respect graph structure:

1

3

2

4 5

1 2 3 4 5

1

2

3

4

5

(a) Graph structure (b) Structure of [Z(θ)]st = θst.



Example: Mixture of Gaussians

• can form mixture models by combining different types of random

variables

• let Ys be conditionally Gaussian given the discrete variable Xs with

parameters γs;j = (µs;j , σ
2
s;j):

Ys

Xs p(xs; θs)

p(ys |xs; γs)

Xs ≡ mixture indicator

Ys ≡ mixture of Gaussian

• couple the mixture indicators X = {Xs, s ∈ V } using a discrete

MRF

• overall model has the exponential form

p(y,x; θ, γ) ∝
∏

s∈V

p(ys |xs; γs) exp
{∑

s∈V

θs(xs)+
∑

(s,t)∈E

θst(xs, xt)
]}
.



Conjugate dual functions

• conjugate duality is a fertile source of variational representations

• any function f can be used to define another function f∗ as follows:

f∗(v) := sup
u∈Rn

{
〈v, u〉 − f(u)

}
.

• easy to show that f∗ is always a convex function

• how about taking the “dual of the dual”? I.e., what is (f∗)∗?

• when f is well-behaved (convex and lower semi-continuous), we

have (f∗)∗ = f , or alternatively stated:

f(u) = sup
v∈Rn

{
〈u, v〉 − f∗(v)

}



Geometric view: Supporting hyperplanes

Question: Given all hyperplanes in Rn × R with normal (v,−1), what

is the intercept of the one that supports epi(f)?

Epigraph of f :

epi(f) := {(u, β) ∈ Rn+1 | f(u) ≤ β}.

f(u)

u
(v,−1)

β

−cb

−ca

〈v, u〉 − ca

〈v, u〉 − cb

Analytically, we require the smallest c ∈ R such that:

〈v, u〉 − c ≤ f(u) for all u ∈ R
n

By re-arranging, we find that this optimal c∗ is the dual value:

c∗ = sup
u∈Rn

{
〈v, u〉 − f(u)

}
.



Example: Single Bernoulli

Random variable X ∈ {0, 1} yields exponential family of the form:

p(x; θ) ∝ exp
{

θ x
}

with A(θ) = log
[

1 + exp(θ)
]

.

Let’s compute the dual A∗(µ) := sup
θ∈R

{

µθ − log[1 + exp(θ)]
}

.

(Possible) stationary point: µ = exp(θ)/[1 + exp(θ)].

A(θ)

θ

〈µ, θ〉 − A∗(µ)

A(θ)

θ
〈µ, θ〉 − c

(a) Epigraph supported (b) Epigraph cannot be supported

We find that: A∗(µ) =







µ logµ+ (1− µ) log(1− µ) if µ ∈ [0, 1]

+∞ otherwise.
.

Leads to the variational representation: A(θ) = maxµ∈[0,1]

{

µ · θ −A∗(µ)
}

.



More general computation of the dual A∗

• consider the definition of the dual function:

A∗(µ) = sup
θ∈Rd

{
〈µ, θ〉 −A(θ)

}
.

• taking derivatives w.r.t θ to find a stationary point yields:

µ−∇A(θ) = 0.

• Useful fact: Derivatives of A yield mean parameters:

∂A

∂θα
(θ) = Eθ[φα(X)] :=

∫
φα(x)p(x; θ)ν(x).

Thus, stationary points satisfy the equation:

µ = Eθ[φ(X)] (1)



Computation of dual (continued)

• assume solution θ(µ) to equation µ = Eθ[φ(X)] (∗)

• strict concavity of objective guarantees that θ(µ) attains global

maximum with value

A∗(µ) = 〈µ, θ(µ)〉 −A(θ(µ))

= Eθ(µ)

[
〈θ(µ), φ(X)〉 − A(θ(µ))

]

= Eθ(µ)[log p(X; θ(µ))]

• recall the definition of entropy :

H(p(x)) := −

∫ [
log p(x)

]
p(x)ν(dx)

• thus, we recognize that A∗(µ) = −H(p(x; θ(µ))) when equation (∗) has a

solution

Question: For which µ ∈ Rd does equation (∗) have a solution

θ(µ)?



Sets of realizable mean parameters

• for any distribution p(·), define a vector µ ∈ R
d of mean

parameters:

µα :=

∫
φα(x)p(x)ν(dx)

• now consider the set M(G;φ) of all realizable mean parameters:

M(G;φ) =
{
µ ∈ R

d
∣∣ µα =

∫
φα(x)p(x)ν(dx) for some p(·)

}

• for discrete families, we refer to this set as a marginal polytope

(as discussed previously)



Examples of M: Gaussian MRF

φ(x) Matrix of sufficient statistics U(µ) Matrix of mean parameters























1 x1 x2 . . . xn

x1 (x1)2 x1x2 . . . x1xn

x2 x2x1 (x2)2 . . . x2xn

.
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.

.

.

.
.
.
.

.

.

.

xn xnx1 xnx2 . . . (xn)2













































1 µ1 µ2 . . . µn

µ1 µ11 µ12 . . . µ1n

µ2 µ21 µ22 . . . µ2n

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

µn µn1 µn2 . . . µnn























• Gaussian mean parameters are specified by a single semidefinite

constraint as MGauss = {µ ∈ R
n+(n

2
) | U(µ) � 0}.

Scalar case:

U(µ) =


 1 µ1

µ1 µ11




Mgauss

µ1

µ11



Examples of M: Discrete MRF

• sufficient statistics:
I j(xs) for s = 1, . . . n, j ∈ Xs

I jk(xs, xt) for(s, t) ∈ E, (j, k) ∈ Xs ×Xt

• mean parameters are simply marginal probabilities, represented as:

µs(xs) :=
∑

j∈Xs

µs;jI j(xs), µst(xs, xt) :=
∑

(j,k)∈Xs×Xt

µst;jkI jk(xs, xt)

aj

M(G)

〈aj , µ〉 = bj

µe • denote the set of realizable µs and µst

by M(G)

• refer to it as the marginal polytope

• extremely difficult to characterize for

general graphs



Geometry and moment mapping

Θ
M

θ µ

For suitable classes of graphical models in exponential form, the

gradient map ∇A is a bijection between Θ and the interior of M.

(e.g., Brown, 1986; Efron, 1978)



Variational principle in terms of mean parameters

• The conjugate dual of A takes the form:

A∗(µ) =




−H(p(x; θ(µ))) if µ ∈ intM(G;φ)

+∞ if µ /∈ clM(G;φ).

Interpretation:

– A∗(µ) is finite (and equal to a certain negative entropy) for any µ that is

globally realizable

– if µ /∈ clM(G;φ), then the max. entropy problem is infeasible

• The cumulant generating function A has the representation:

A(θ)︸ ︷︷ ︸ = sup
µ∈M(G;φ)

{〈θ, µ〉 − A∗(µ)}

︸ ︷︷ ︸
,

cumulant generating func. max. ent. problem over M

• in contrast to the “free energy” approach, solving this problem provides

both the value A(θ) and the exact mean parameters µ̂α = Eθ[φα(x)]



Alternative view: Kullback-Leibler divergence

• Kullback-Leibler divergence defines “distance” between probability

distributions:

D(p || q) :=

∫ [
log

p(x)

q(x)

]
p(x)ν(dx)

• for two exponential family members p(x; θ1) and p(x; θ2), we have

D(p(x; θ1) || p(x; θ2)) = A(θ2)−A(θ1)− 〈µ1, θ2 − θ1〉

• substituting A(θ1) = 〈θ1, µ1〉 −A∗(µ1) yields a mixed form:

D(p(x; θ1) || p(x; θ2)) ≡ D(µ1 || θ2) = A(θ2) +A∗(µ1)− 〈µ1, θ2〉

Hence, the following two assertions are equivalent:

A(θ2) = sup
µ1∈M(G;φ)

{〈θ2, µ1〉 − A∗(µ1)}

0 = inf
µ1∈M(G;φ)

D(µ1 || θ2)



Outline

1. Max-product, linear programming, and other conic relaxations

(a) Max-product and variational interpretation

(b) Marginal polytopes

(c) Linear programming and tree-reweighted max-product

(d) Conic relaxations and on-going work

2. Variational methods for integration/summation

(a) Exponential families and maximum entropy

(b) Core variational principle

3. Algorithms from the variational principle

(a) Exact methods for Gaussians

(b) Belief-propagation/sum-product

(c) Expectation-propagation

(d) Convex relaxations



§3. Algorithms from the variational principle

Some challenges:

1. Mean parameter spaces M: very difficult to characterize!

2. Negative entropy A∗(µ): typically lacks explicit form in terms of µ.

Derivation of algorithms:

1. Certain cases: variational problem is exactly solvable:

• belief propagation on trees/junction trees

• Gaussians

2. Other problems: variational principle is intractable, but can be

relaxed.

• belief propagation on arbitrary graphs

• generalized belief propagation

• expectation-propagation

• mean-field methods

• convex relaxations



Example: Multivariate Gaussian (fixed covariance)

Consider the set of all Gaussians with fixed inverse covariance Q ≻ 0.

• potentials φ(x) = {x1, . . . , xn} and natural parameter θ ∈ Θ = R
n.

• cumulant generating function:

density

A(θ) = log

∫

Rn

︷ ︸︸ ︷

exp
{ n∑

s=1

θsxs
}

exp
{
−

1

2
x
TQx

}
dx

︸ ︷︷ ︸
base measure

• completing the square yields A(θ) = 1
2
θTQ−1θ + constant

• straightforward computation leads to the dual

A∗(µ) = 1
2
µTQµ− constant

• putting the pieces back together yields the variational principle

A(θ) = sup
µ∈Rn

{
θTµ−

1

2
µTQµ

}
+ constant

• optimum is uniquely obtained at the familiar Gaussian mean µ̂ = Q−1θ.



Example: Multivariate Gaussian (arbitrary cov.)

• matrices of sufficient statistics, natural parameters, and mean

parameters:

φ(X) =


 1

X



[
1 X

]
, U(θ) :=


 0 [θs]

[θs] [θst]


 U(µ) := E

{
 1

X



[
1 X

]}

• cumulant generating function:

A(θ) = log

∫
exp

{
trace(U(θ)φ(x))

}
dx

• computing the dual function:

A∗(µ) = −
1

2
log detU(µ)−

n

2
log 2πe,

• exact variational principle is a log-determinant problem:

A(θ) = sup
U(µ)≻0, [U(µ)]11=1

{
trace(U(θ)U(µ)) +

1

2
log detU(µ)

}
+ C

}
.

• solution yields the normal equations for Gaussian mean and covariance.



Example: Belief propagation and Bethe principle

Problem set-up

• discrete variables Xs ∈ {0, 1, . . . ,ms − 1} on graph G = (V,E)

• sufficient statistics: indicator functions for each node and edge

I j(xs) for s = 1, . . . n, j ∈ Xs

I jk(xs, xt) for (s, t) ∈ E, (j, k) ∈ Xs ×Xt.

• exponential representation of distribution:

p(x; θ) ∝ exp
{∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)
}

where θs(xs) :=
∑

j∈Xs
θs;jI j(xs) (and similarly for θst(xs, xt))

Two main ingredients:

1. Exact entropy −A∗(µ) is intractable, so let’s approximate it.

2. The marginal polytope M(G) is also difficult to characterize, so let’s

use the tree-based outer bound L(G).



Bethe entropy approximation

• mean parameters are simply marginal probabilities, represented as:

µs(xs) :=
∑

j∈Xs

µs;jI j(xs), µst(xs, xt) :=
∑

(j,k)∈Xs×Xt

µst;jkI jk(xs, xt)

• Bethe entropy approximation

−A∗
Bethe(µ) =

∑

s∈V

Hs(µs)−
∑

(s,t)∈E

Ist(µst),

where

Single node entropy: Hs(µs) := −
∑

xs
µs(xs) logµs(xs)

Mutual information: Ist(µst) :=
∑

xs,xt
µst(xs, xt) log

µst(xs,xt)
µs(xs)µt(xt)

.

• exact for trees, using the factorization:

p(x; θ) =
∏

s∈V

µs(xs)
∏

(s,t)∈E

µst(xs, xt)

µs(xs)µt(xt)



Bethe variational principle

• Bethe entropy approximation, and outer bound L(G):

L(G) =



~τ |

∑

xs

τs(xs) = 1,
∑

x′

t

τst(xs, x
′
t) = τs(xs)



 .

• combining these ingredients leads to the Bethe variational prorblem

(BVP):

max
τ∈L(G)

{
〈θ, τ〉+

∑

s∈V

Hs(µs)−
∑

(s,t)∈E

Ist(τst)
}

Key fact: Belief propagation can be derived as an iterative method for

solving a Lagrangian formulation of the BVP (Yedidia et al., 2002)



Lagrangian derivation of belief propagation

• let’s try to solve this problem by a (partial) Lagrangian formulation

• assign a Lagrange multiplier λts(xs) for each constraint

Cts(xs) := τs(xs)−
∑

xt
τst(xs, xt) = 0

• will enforce the normalization (
∑

xs
τs(xs) = 1) and non-negativity

constraints explicitly

• the Lagrangian takes the form:

L(τ ;λ) = 〈θ, τ〉+
∑

s∈V

Hs(τs)−
∑

(s,t)∈E(G)

Ist(τst)

+
∑

(s,t)∈E

[∑

xt

λst(xt)Cst(xt) +
∑

xs

λts(xs)Cts(xs)
]



Lagrangian derivation (part II)

• taking derivatives of the Lagrangian w.r.t τs and τst yields

∂L

∂τs(xs)
= θs(xs)− log τs(xs) +

∑

t∈N (s)

λts(xs) + C

∂L

∂τst(xs, xt)
= θst(xs, xt)− log

τst(xs, xt)

τs(xs)τt(xt)
− λts(xs)− λst(xt) + C ′

• setting these partial derivatives to zero and simplifying:

τs(xs) ∝ exp
{

θs(xs)
}

∏

t∈N (s)

exp
{

λts(xs)
}

τs(xs, xt) ∝ exp
{

θs(xs) + θt(xt) + θst(xs, xt)
}

×
∏

u∈N (s)\t

exp
{

λus(xs)
}

∏

v∈N (t)\s

exp
{

λvt(xt)
}

• enforcing the constraint Cts(xs) = 0 on these representations yields the
familiar update rule for the messages Mts(xs) = exp(λts(xs)):

Mts(xs) ←
∑

xt

exp
{

θt(xt) + θst(xs, xt)
}

∏

u∈N (t)\s

Mut(xt)



Geometry of Bethe variational problem

µint

L(G)

M(G)

µfrac

• belief propagation uses a polyhedral outer approximation to M(G):

– for any graph, L(G) ⊇M(G).

– equality holds ⇐⇒ G is a tree.

Natural question: Do BP fixed points ever fall outside of the

marginal polytope M(G)?



Illustration: Globally inconsistent BP fixed points

Consider the following assignment of pseudomarginals τs, τst:

Locally consistent

(pseudo)marginals

3

2

1 �0:1 0:40:4 0:1�
�0:4 0:10:1 0:4� �0:50:5��0:50:5�

�0:50:5��0:4 0:10:1 0:4�
• can verify that τ ∈ L(G), and that τ is a fixed point of belief

propagation (with all constant messages)

• however, τ is globally inconsistent

Note: More generally: for any τ in the interior of L(G), can construct

a distribution with τ as a BP fixed point.



High-level perspective: A broad class of methods

• message-passing algorithms (e.g., mean field, belief propagation)

are solving approximate versions of exact variational principle in

exponential families

• there are two distinct components to approximations:

(a) can use either inner or outer bounds to M

(b) various approximations to entropy function −A∗(µ)

Refining one or both components yields better approximations:

• BP: polyhedral outer bound and non-convex Bethe approximation

• Kikuchi and variants: tighter polyhedral outer bounds and better

entropy approximations (e.g.,Yedidia et al., 2002)

• Expectation-propagation: better outer bounds and Bethe-like

entropy approximations (Minka, 2002)



Generalized belief propagation on hypergraphs

(Yedidia et al., 2002)

• a hypergraph is a natural generalization of a graph

• it consists of a set of vertices V and a set E of hyperedges, where

each hyperedge is a subset of V

1 2

3 4

1	4

1 2

2

4 3

3
1 2 3 2 3 4 

2 3

1 2 4 5
52

2 3 5 6

5

54 7 8
5 8

5 6 8 9

4 5 5 6

(a) Ordinary graph (b) Hypertree (width 2) (c) Hypergraph

• ancestor/descendant relationships:

– g ⊂ h if g is contained within hyperedge h

– g ⊃ h for opposite relationship



Hypertree factorization

• for each hyperedge: logϕh(xh) :=
∑

g⊆h(−1)
|h\g| [log τg(xg)].

• any hypertree-structured distribution is guaranteed to factor as:

p(x) =
∏

h∈E

ϕh(xh).

• Ordinary tree:
ϕs(xs) = µs(xs) for any vertex s

ϕst(xs, xt) = µst(xs,xt)
µs(xs) µt(xt)

for edge (s, t).

• Hypertree:

ϕ1245 =
µ1245

µ25

µ5

µ45

µ5

µ5

ϕ45 =
µ45

µ5

ϕ5 = µ5

1 2 4 5
52

2 3 5 6

54 5 5 6

54 7 8
5 8



Building augmented hypergraphs

Better entropy approximations via augmented hypergraphs.

1 2

65

9

3

4

7 8

1 2
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4

3

9

5 6

1 2 4 5

54 7 8 5 6 8 9

2 3 5 6

7 8 8 9

5 6

4 7

1 4

4 5

1 2 2 3

6 9

8

4 5

5 8

52

2

3 6

6

1

7

3

9

(a) Original (b) Clustering (c) Full covering

1 2 4 5
52

2 3 5 6

5

54 7 8
5 8

5 6 8 9

4 5 5 6

1 2 4 5
52

2 3 5 6

54 7 8
5 8

5 6 8 9

4 5 5 6

(d) Kikuchi (e) Fails single counting



Expectation-propagation (EP)

• originally derived in terms of assumed density filtering (Minka, 2002)

• another instance of a relaxed variational principle:

– “Bethe-like” (termwise) approximation to entropy

– local consistency constraints on marginals

• distribution with tractable/intractable decomposition:

f(x, γ,Γ) ∝ exp(〈γ, φ(x)〉)︸ ︷︷ ︸

k∏

i=1

Ti(x)

︸ ︷︷ ︸
Tractable Intractable

• auxiliary parameters θ, and term-by-term entropy approx.:

H(f) ≈ H(qbase(x; θ, γ))︸ ︷︷ ︸+
k∑

i=1

[
H(qiaug(x; θ, γ, Ti))−H(qbase(x; θ, γ))

]

︸ ︷︷ ︸
Base entropy Term approximations



EP updates for Gaussian mixtures

• distribution formed by tractable/intractable combination:

f(x,Σ) ∝ exp

(
−
1

2
xTΣ−1x

) n∏

i=1

f(yi | X = x)

• Gaussian mixture likelihoods

f(yi | X = x) = αN (yi; 0, σ2
0) + (1− α)N (yi;x, σ2

1)

• base/augmented distributions take form:

Base: qbase(x; Σ, θ,Θ) ∝ exp
(
〈γ, x〉 − 1

2 trace(Θ + Σ−1 xxT )
)

Augmented: qiaug(x; Σ, θ,Θ, Ti) ∝ q(x; Σ, θ,Θ) Ti(x).

• variational problem: maximize term-by-term entropy

approximation, subject to marginalization constraints:

Eqbase
[X] = Eqiaug

[X]

Eqbase
[XXT] = Eqiaug

[XXT].



Convex relaxations and upper bounds

Possible concerns with Bethe/Kikuchi, expectation-propagation etc.?

(a) lack of convexity ⇒ multiple local optima, and algorithmic

complications

(b) failure to bound the log partition function

Goal: Techniques for approximate computation of marginals and

parameter estimation based on:

(a) convex variational problems ⇒ unique global optimum

(b) relaxations of exact problem ⇒ upper bounds on A(θ)

Usefulness of bounds:

(a) interval estimates for marginals

(b) approximate parameter estimation

(c) large deviations (prob. of rare events)



Bounds from “convexified” Bethe/Kikuchi problems

Idea: Upper bound −A∗(µ) by convex combination of tree-structured

entropies.

−A∗(µ) ≤ −ρ(T 1)A∗(µ(T 1)) − ρ(T 2)A∗(µ(T 2)) − ρ(T 3)A∗(µ(T 3))

• given any spanning tree T , define the moment-matched tree distribution:

p(x;µ(T )) :=
∏

s∈V

µs(xs)
∏

(s,t)∈E

µst(xs, xt)

µs(xs) µt(xt)

• use −A∗(µ(T )) to denote the associated tree entropy

• let ρ = {ρ(T )} be a probability distribution over spanning trees



Optimal bounds by tree-reweighted message-passing

Recall the constraint set of locally consistent marginal distributions:

L(G) = { τ ≥ 0 |
∑

xs

τs(xs) = 1,

︸ ︷︷ ︸

∑

xs

τst(xs, xt) = τt(xt)

︸ ︷︷ ︸

}.

normalization marginalization

Theorem: (Wainwright et al., UAI-02)

(a) For any given edge weights ρe = {ρe} in the spanning tree polytope,

the optimal upper bound over all tree parameters is given by:

A(θ) ≤ max
τ∈L(G)

{
〈θ, τ〉+

∑

s∈V

Hs(τs)−
∑

(s,t)∈E

ρstIst(τst)
}
.

(b) This optimization problem is strictly convex, and its unique optimum

is specified by the fixed point of ρe-reweighted sum-product:

M∗
ts(xs) = κ

∑

x′

t∈Xt

{
exp

[θst(xs, x′t)
ρst

+ θt(x
′
t)
]

∏
v∈Γ(t)\s

[
M∗

vt(xt)
]ρvt

[
M∗

st(xt)
](1−ρts)

}
.



Semidefinite constraints in convex relaxations

Fact: Belief propagation and its hypergraph-based generalizations all

involve polyhedral (i.e., linear) outer bounds on the marginal polytope.

Idea: Semidefinite constraints to generate more global outer bounds.

Example: For the Ising model, relevant mean parameters are µs = p(Xs = 1) and

µst = p(Xs = 1, Xt = 1).

Define Y = [1 X]T , and consider the second-order moment matrix:

E[YYT ] =























1 µ1 µ2 . . . µn

µ1 µ1 µ12 . . . µ1n

µ2 µ12 µ2 . . . µ2n

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

µn µn1 µn2 . . . µn























= M1[µ].

• since it must be positive semidefinite, this (an infinite number of) linear

constraints on µs, µst.

• defines the first-order semidefinite relaxation of M(G):

S(G) =
{

µ ∈ R
d |M1[µ] � 0

}

.



Illustrative example

Locally consistent

(pseudo)marginals

3

2

1 �0:1 0:40:4 0:1�
�0:4 0:10:1 0:4� �0:50:5��0:50:5�

�0:50:5��0:4 0:10:1 0:4�
Second-order

moment matrix




µ1 µ12 µ13

µ21 µ2 µ23

µ31 µ32 µ3


 =




0.5 0.4 0.1

0.4 0.5 0.4

0.1 0.4 0.5




Not positive-semidefinite!



Log-determinant relaxation

• based on optimizing over covariance matrices M1(µ) ∈ S1(Kn)

Theorem: Consider an outer bound O(Kn) that satisfies:

M(Kn) ⊆ O(Kn) ⊆ S1(Kn)

For any such outer bound, A(θ) is upper bounded by:

max
µ∈O(Kn)

{
〈θ, µ〉+

1

2
log det

[
M1(µ)+

1

3
blkdiag[0, In]

]}
+
n

2
log(

πe

2
)

Remarks:

1. Log-det. problem can be solved efficiently by interior point methods.

2. Relevance for applications (e.g., Banerjee et al., 2008)

(a) Upper bound on A(θ).

(b) Method for computing approximate marginals.

(Wainwright & Jordan, 2003)



Mean field theory

Recap: All variational methods discussed until now are based on:

• outer bounding the set of valid mean parameters.

• approximating the entropy (negative dual function −A∗(µ))

Different idea: Restrict µ to a subset of distributions for which

−A∗(µ) has a tractable form.

Examples:

(a) For product distributions p(x) =
∏

s∈V µs(xs), entropy decomposes

as −A∗(µ) =
∑

s∈V Hs(xs).

(b) Similarly, for trees (more generally, decomposable graphs), the

junction tree theorem yields an explicit form for −A∗(µ).

Definition: A subgraph H of G is tractable if the entropy has an

explicit form for any distribution that respects H.



Geometry of mean field

• let H represent a tractable subgraph (i.e., for which

A∗ has explicit form)

• let Mtr(G;H) represent tractable mean parameters:

Mtr(G;H) := {µ| µ = Eθ[φ(x)] s. t. θ respects H}.

1 2

65

9

3

4

7 8

1 2

65

9

3

4

7 8

µe

M

Mtr
• under mild conditions, Mtr is a non-

convex inner approximation to M

• optimizing over Mtr (as opposed to M)

yields lower bound :

A(θ) ≥ sup
µ̃∈Mtr

{
〈θ, µ̃〉 − A∗(µ̃)

}
.



Alternative view: Minimizing KL divergence

• recall the mixed form of the KL divergence between p(x; θ) and

p(x; θ̃):

D(µ̃ || θ) = A(θ) +A∗(µ̃)− 〈µ̃, θ〉

• try to find the “best” approximation to p(x; θ) in the sense of KL

divergence

• in analytical terms, the problem of interest is

inf
µ̃∈Mtr

D(µ̃ || θ) = A(θ) + inf
µ̃∈Mtr

{
A∗(µ̃)− 〈µ̃, θ〉

}

• hence, finding the tightest lower bound on A(θ) is equivalent to

finding the best approximation to p(x; θ) from distributions with

µ̃ ∈Mtr



Example: Naive mean field algorithm for Ising model

• consider completely disconnected subgraph H = (V, ∅)

• permissible exponential parameters belong to subspace

E(H) = {θ ∈ R
d | θst = 0 ∀ (s, t) ∈ E}

• allowed distributions take product form p(x; θ) =
∏
s∈V

p(xs; θs), and

generate

Mtr(G;H) = {µ | µst = µsµt, µs ∈ [0, 1] }.

• approximate variational principle:

max
µs∈[0,1]

{

∑

s∈V

θsµs+
∑

(s,t)∈E

θstµsµt−
[

∑

s∈V

µs logµs+(1−µs) log(1−µs)
]

}

.

• Co-ordinate ascent: with all {µt, t 6= s} fixed, problem is strictly

concave in µs and optimum is attained at

µs ←−
{
1 + exp[−(θs +

∑

t∈N (s)

θstµt)]
}−1



Example: Structured mean field for coupled HMM

(a) (b)

• entropy of distribution that respects H decouples into sum: one

term for each chain.

• structured mean field updates are an iterative method for finding

the tightest approximation (either in terms of KL or lower bound)



Summary and future directions

• variational methods: statistical/computational tasks converted to

optimization problems:

(a) complementary to sampling-based methods (e.g., MCMC)

(b) require entropy approximations, and characterization of marginal

polytopes (sets of valid mean parameters)

(c) a variety of new “relaxations” remain to be explored

• many open questions:

(a) strong performance guarantees? (only for special cases thus far...)

(b) extension to non-parametric settings?

(c) hybrid techniques (variational and MCMC)

(d) variational methods in parameter estimation

(e) fast techniques for solving large-scale relaxations (e.g., SDPs, other

convex programs)


